
 
1. Consider inserting data with integer keys ​34, 16, 45, 53, 6, 29, 37, 78, and 1​ in the given order 

into a table of size 9 where the hashing function is ​h(k) = k % 11​. Show how you would insert 
these values into the table using Linear Probing, Quadratic Probing, and Separate Chaining: 

 
   Linear Probing     Quadratic Probing Separate Chaining 

 
0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 
 

 
 

 

 

 

 

 

 

 

 

 

 
 

 
0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 
 

 
 

 

 

 

 

 

 

 

 

 

 
 

 
0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 
 

 
 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CSE 373 Section Handout �3



2.  Consider the following table which inserts values using double-hashing with a primary hash 
function    ​h(k) = k % 10​, and a double hash function ​ g(k) = 7 - (k % 7)​: 
 
0 

1 

2 

3 

4 

5 

6 

7 

8 

9 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
a. Insert the following values ​21, 36, 26, 11, 6​ into the hash table using the above hashing 

method. 
 

 
b. Give a single integer that, when we attempt to insert it the table using the above hashing 

method after inserting the previous values from part a, results in an infinite loop. 
 
 
 
 
 
 
c. Is there any way we can avoid double-hashing resulting in an infinite loop? Explain your 

answer. 
 
 

 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

collision resolution schemes, give the worst case asymptotic runtime of insert for the given load 
factor: 
 
 

 ƛ = 0 0.5 < ƛ < 1 ƛ >= 1 

Linear Probing  
 
 
 

  

Quadratic probing  
 
 
 

  

Separate Chaining 
where chains are 
linked lists 

 
 
 
 

  

Separate Chaining 
where chains are 
AVLTrees 

  
 
 
 

  

3. What effect does the load factor have on the runtime of insert? For each of the following



 

Hashing 

For these next few problems, assume we are dealing with the following ​Business ​ class. Our goal 
is to develop a hash function for this object, so we can use it as a key in a hash table. Remember, 
objects that are considered equal must hash to the same value. 
 
public class Business { 

private String name; 
private String city; 
private int numEmployees; 

 
public int hashCode() { 

// your hash functions here 
} 

} 
 
 

1. Design a hash function that has a 100% collision rate (all keys map to the same “bucket”) 
 
 
 
 
 

2. Come up with a hash function that should have a 50% collision rate. 
 
 
 
 
 

3. Try to come up with a hash function that is better than those you provided in (1) and (2). 
 
 
 
 
 

4. If we were unable to come up with a good hash function from scratch on my own, how could we 
use existing hash functions to help? Provide an example. 
 
 
 
 
 
 
 
 
 

4.



 

5. Insert the keys ​8, 3, 2 , 20, 0, 5, ​into the table below, using the following hash function. Use 
Linear Probing ​ to resolve any collisions.  
 
h(k) = (k * 2 + 1) % tableSize 
 
0 

1 

2 

3 

4 

5 

6 

7 
 

 

 

 

 

 

 

 

 

 

 
 
 

6. What is the load factor of the above table? 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 


