
Practice	design	decision	problems	
For	each	of	the	following	scenarios:	

• What data structures would you use in the following scenarios? 
• Why? (Note that how you would use it does not answer why) 
• If there is no clear answer (or for practice, even if there is), what questions would you ask 

to inform your design decisions? 
 

All	the	practice	problems	are	on	one	page	to	save	paper/space.	You	may	want	to	use	more	
pages	if	you	want	to	practice	writing	solutions.	
	

1. Keeping	track	of	someone’s	actions	in	a	program	to	let	them	undo/redo.	
	
	
	

2. Store	the	genealogy	of	different	species	of	animals,	and	quickly	find	which	animals	are	
most	genetically	similar	to	another	animal.	
	
	
	

3. Store	friendship	information	on	a	social	networking	site,	in	which	you	can	find	
someone’s	friends,	or	friends	of	friend’s.	
	
	
	

4. Keep	track	of	possible	moves	in	a	game	of	chess	to	know	what	to	play	next.	
	
	
	

5. Find	the	minimum	length	of	extension	cords	to	connect	twinkle	lights	around	the	house	
with	one	power	outlet	and	you	know	where	you	want	to	hang	the	lights.	Note	that	you	
can	connect	the	lights	to	each	other	to	power	them.	
	
	
	

6. Store	an	interactive	table	of	contents	for	a	book	that	automatically	updates	when	you	
write	new	chapters,	sub	chapters,	and	sub	sub-chapters,	and	you	can	click	on	part	of	the	
table	of	contents	to	immediately	get	to	the	right	part	of	the	book.	
	
	
	

7. Manage	threads	for	concurrency,	where	some	threads	are	more	critical	than	others	and	
should	access	resources	first	no	matter	what	order	the	threads	started.	

	



SPOILER	ALERT:	
Answers	are	on	the	next	page!		 	



Suggested	Answers	
	

1. Keeping	track	of	someone’s	actions	in	a	program	to	let	them	undo/redo.	
Stack	(either	linked	list	or	array,	because	it	can	undo/redo	with	pop/push	in	O(1)	time)		

		(Linked	list	version	for	speed,	array	for	space)	
	

2. Store	the	genealogy	of	different	species	of	animals,	and	quickly	find	which	animals	are	
most	genetically	similar	to	another	animal.		
Tree	(does	not	need	to	be	a	BST.	If	you	have	a	reference	to	the	animal	in	question,	local	
traversals	in	the	subtree	with	that	animal	can	quickly	find	similar	animals	in	O(n)	where	n	is	the	
number	of	similar	animals.	Also	stores	animals	in	a	genealogically	logical	order,	which	makes	the	
code	simpler	to	understand	[also	important	in	decisions!])	
	

(If	you	want	to	get	fancy	and	fast	look-up	for	where	that	animal	is	in	the	tree	and	space	is	not	a	
constraint,	you	can	additionally	store	a	HashTable	with	animal	names	as	keys	and	
references	to	their	respective	nodes	in	the	tree	as	values	to	look	up	that	initial	animal	in	O(1))	
	

3. Store	friendship	information	on	a	social	networking	site,	in	which	you	can	find	
someone’s	friends,	or	friends	of	friend’s.		
Graph	using	adjacency	list		
(Space:	assuming	people	on	the	site	don’t	know	most	of	the	other	people,	it’s	a	sparse	graph	so	
adjacency	matrices	waste	a	lot	of	space)	
(Efficiency:	adjacency	lists	are	faster	for	finding	neighbors	(i.e.	friends)	--	especially	for	sparse	
graphs!)		
	

4. Keep	track	of	possible	moves	in	a	game	of	chess	to	know	what	to	play	next.		
Tree	
	

5. Find	the	minimum	length	of	extension	cords	to	connect	twinkle	lights	around	the	house	
with	one	power	outlet	and	you	know	where	you	want	to	hang	the	lights.	Note	that	you	
can	connect	the	lights	to	each	other	to	power	them.		
Graph	for	MST	
	

6. Store	an	interactive	table	of	contents	for	a	book	that	automatically	updates	when	you	
write	new	chapters,	sub	chapters,	and	sub	sub-chapters,	and	you	can	click	on	part	of	the	
table	of	contents	to	immediately	get	to	the	right	part	of	the	book.		
Search	Tree	(can	represent	hierarchy	and	have	fast	search.	Need	not	be	binary)	
	

7. Manage	threads	for	concurrency,	where	some	threads	are	more	critical	than	others	and	
should	access	resources	first	no	matter	what	order	the	threads	started.		

Heap 


