

 Page 1 of 10

Name: _____________________________________

Email address: _____________________________________

CSE 373 Autumn 2012: Midterm #2
(closed book, closed notes, NO calculators allowed)

Instructions: Read the directions for each question carefully before answering. We may give

partial credit based on the work you write down, so if time permits, show your work! Use only

the data structures and algorithms we have discussed in class or that were mentioned in the book

so far.

Note: For questions where you are drawing pictures, please circle your final answer for any

credit.

Good Luck!

Total: 67 points. Time: 50 minutes.

Question Max Points Score

1 10

2 13

3 8

4 7

5 9

6 8

7 12

Total 67

Page 2 of 10

1) [10 points total] Disjoint Sets: Given the array representation of up-trees discussed in class

(where weight[x] = total number of values in set x, and up[x] == -1 indicates that node x

is a root node), for example (weight is unspecified for non-root nodes):

a) [3 points] Fill in the code below for Union by Size (weighted union). On a tie in size, the

set referred to by the first parameter should be added to the set referred to by the second.

int up[N];

int weight[N];

void union(int x, int y) {

// Assuming x and y are roots of two different sets,

// fill in code to implement union by size (weight)

// Break ties in size by adding the set x

// to the set y.

3

6

8

5 7

9

4

9

9 -1

2

-1 4 3 4

6

1 2 3 4 5 6 7 8 9

up
weight 2 1

-1

1

5

 Page 3 of 10

1) (cont)

b) [3 points] Fill in code below for find (without path compression) below. DO NOT

INCLUDE PATH COMPRESSION, you will lose points if you do.

int find(int x) {

// Assuming x is an element, fill in code to

// return the root of the set x belongs to.

c) [2 points] What is the worst case running time of a single find operation in your code above.

That is, assume union by size is used but path compression is not used. N = total # of elements

in all sets. (no explanation required)

d) [2 points] Update the diagram AND the two arrays on the previous page to reflect the

effect of doing a find operation WITH path compression on the value 2. That is, do not use the

find operation you implemented above, do a find operation that uses path compression.

Page 4 of 10

2) [13 points total] Hashing:

a) [6 points] Draw the contents of the two hash tables below after inserting the values shown.

Show your work for partial credit. If an insertion fails, please indicate which values fail and

attempt to insert any remaining values. The hash function used is H(k) = k mod tablesize.

Table 1: Separate chaining, Table 2: Quadratic Probing

(where each bucket points to an

 unsorted linked list)

Insert: 4, 21, 6, 28, 14, 12 Insert: 3, 10, 4, 11

b) [2 points] Give the load factor for each table:

Load factor for Table 1: Load factor for Table 2:

0

1

3

2

4

5

0

1

3

2

4

5

6

6

7

 Page 5 of 10

2) (cont)

c) [1 point] Table 1 will (circle one):

i. performance of inserts will gradually degrade as more values are inserted

ii. possibly fail to find a location on the next insertion

iii. be fine on the next insertion, but may fail to find a location on any insertions after

that

iv. none of the above

d) [1 point] Table 2 will (circle one):

i. performance of inserts will gradually degrade as more values are inserted

ii. possibly fail to find a location on the next insertion

iii. be fine on the next insertion, but may fail to find a location on any insertions after

that

iv. none of the above

e) [1 point] In Table 1, if we randomly pick one of the values and delete it (using the method

that makes the most sense): (circle one):

i. this may improve performance of find operations

ii. this will not affect performance of find operations

iii. this may degrade performance of find operations

iv. this may cause a find on a different value to fail

v. none of the above

f) [1 point] In Table 2, if we randomly pick one of the values and remove it from the table,

leaving that location empty: (circle one):

i. this may improve performance of find operations

ii. this will not affect performance of find operations

iii. this may degrade performance of find operations

iv. this may cause a find on a different value to fail

v. none of the above

g) [1 point] If we re-hash the values from Table 2 into a new table of size 17 (circle one):

i. locations 7 through 17 of the new table will initially be empty

ii. the values will all be clustered at the beginning of the new table

iii. the values will all be clustered at the end of the new table

iv. we are guaranteed to be able to insert at least five more values into the new table

v. none of the above

Page 6 of 10

3) [8 points total] Graphs

a) [2 points] Draw both the adjacency matrix and adjacency list representations of this

graph. For this problem, assume there are no implicit self loops (e.g. an edge from A to

A). That is, unless there is a self loop explicitly drawn in the graph, there should not be

one in the representation.

Adjacency Matrix: Adjacency List:

What is the worst case big-O running time of the following operations (use V and E rather than

N in your answers). No explanation is required.

b) [2 points] Insert an edge in a graph that is stored in an adjacency matrix.

c) [2 points] Find the in-degree of a single vertex whose graph is stored in an adjacency

matrix.

d) [2 points] Find the out-degree of a single vertex whose graph is stored in an adjacency

list.

A

B

C

B

B

C

B

B

D

B

B

 Page 7 of 10

4) [7 points total] Graphs

Use the following graph for the questions on this page:

a) [2 points] If possible, list two valid topological orderings of the nodes in the graph

above. If there is only one valid topological ordering, list that one ordering. If there is

no valid topological ordering, state why one does not exist.

b) [2 points] What is the worst case big-O running time of optimized topological sort for a

graph represented as an adjacency list? (note this refers to the optimized version

presented in lecture where a queue is used) (use V and E rather than N in your answer)

No explanation is needed.

c) [2 points] This graph is: (Circle all that are true):

directed weakly connected undirected

complete acyclic strongly connected

d) [1 point] What is the in-degree of node B?

A

B

B

B

C

B

B

D

B

B

E

B

B

2

1

2

3

4

5

7

Page 8 of 10

5) [9 points total] Traversals and More Graphs

a) [3 points] Given the graph above and using the algorithm described in lecture, list one

plausible order that vertices in the graph above would be processed if a breadth first traversal

is done starting at A.

Give an exact answer (NOT an answer in big-O) to each question below in terms of V (the

number of vertices in the graph). Do NOT use E in your answers. No explanation needed.

b) [2 points] What is the maximum number of edges possible in a directed graph if self loops

are allowed?

c) [2 points] What is the maximum degree of a vertex in a complete undirected graph that has

self loops?

d) [2 points] What is the minimum number of edges possible in a connected undirected graph

that does not have self loops?

2

K

B

B

1

C

B

B

B

A

B

B

D

B

B

E

B

B

2

1

2

3

4

5

7

H

B

B

J

B

B

2

4

 Page 9 of 10

6) [8 points] Memory Hierarchy & Locality: Examine the code example below:

b = 2045;

i = 1

x[i] = i;

while (i < 1000) {

 a = y[300];

 b = z[i] + c;

c = c + w[i+500] + y[i];

i = i + 1;

}

Considering only their use in the code segment above, for each of the following variables,

indicate below what type of locality (if any) is demonstrated. Please circle all that apply (you

may circle more than one item for each variable):

a spatial locality temporal locality no locality

b spatial locality temporal locality no locality

c spatial locality temporal locality no locality

i spatial locality temporal locality no locality

w spatial locality temporal locality no locality

x spatial locality temporal locality no locality

y spatial locality temporal locality no locality

z spatial locality temporal locality no locality

Page 10 of 10

7) (12 pts) Running Time Analysis:

 Give the tightest possible big-O upper bound for the worst case running time for each

operation listed below in terms of N. Assume no duplicate values and that you can

implement the operation as a member function of the class – with access to the underlying

data structure, including knowing the number of values currently stored. For array-based

implementations, assume that the array is large enough – does not need to be grown.

 You do NOT need to give an explanation.

 Give your answer in big-O, only fully simplified answers will receive full credit.

a) A rehash operation in an open addressing hash table where quadratic probing

is used to resolve collisions. Assume original tablesize = 3N (before re-hashing),

new tablesize = N
3
 and there are currently N items in the hash table.

b) Decrease (also known as DecreaseKey) in a priority queue containing N values

implemented with a binary min heap, assuming you have direct access to

the element you are decreasing.

c) Find in a separate chaining hash table where each bucket points to a

binary search tree. Assume: tablesize N
2

and there are currently N items

in the hash table.

d) Union by size in a disjoint set implemented with path compression (total

number of elements = N).

e) Find the maximum value in hash table where linear probing is used to

resolve collisions. Assume: tablesize = N
5

and there are currently N items

in the hash table.

f) Given three arrays of unsorted integers, each one of size N
2
, create a single

binary min heap out of those values.

a)

b)

c)

d)

e)

f)

