

 Page 1 of 10

Name: _________Sample Solution_____________________

Email address: _____________________________________

CSE 373 Autumn 2011: Midterm #2
(closed book, closed notes, NO calculators allowed)

Instructions: Read the directions for each question carefully before answering. We may

give partial credit based on the work you write down, so if time permits, show your work!

Use only the data structures and algorithms we have discussed in class or that were

mentioned in the book so far.

Note: For questions where you are drawing pictures, please circle your final answer for any

credit.

Good Luck!

Total: 65 points. Time: 50 minutes.

Question Max Points Score

1 12

2 14

3 6

4 7

5 6

6 8

7 12

Total 65

Page 2 of 10 2

1) [12 points total] Disjoint Sets
The uptrees used to represent sets in the union-find algorithm can be stored in two n-element

arrays. The up array stores the parent of each node (or -1 if the node has no parent). The

weight array stores the number of items in a set (its weight) if the node is the root

(representative node) of a set. (If a node is not a root the contents of its location in the

weight array are undefined – we don’t care what value it holds, it can be zero or any other

number.)

The following shows a collection of sets containing the numbers 1 through 14, without the

weight array filled in:

 1 2 3 4 5 6 7 8 9 10 11 12

8 8

-1 3

6

7 12 -1 3 8 4 -1 8 12

a) [3 points] Draw a picture of the uptrees represented by the data in the up array shown

above.

up

13

weight

14

 Page 3 of 10

1) (cont)

b) [3 points] Now, draw a new set of uptrees to show the results of executing:
union(find(2), find(4));

find(5);

Regardless of how the trees from part a) were constructed, here assume that find uses path

compression and that union uses union-by-size (aka union by weight). In case of ties in

size, always make the higher numbered root point to the lower numbered one. Unioning a set

with itself does nothing.

c) [2 points] Update the up and weight arrays at the top of the previous page to reflect the

picture after part b). That is, fill in the contents of the weight array and update the contents

of the up array.

d) [2 points] What is the worst case big-O running time of a single union operation if union

by size (aka union by weight) and path compression are used (assuming you are always

passed roots as parameters)? N = total # of elements in all sets. (no explanation required)

O(1)

e) [2 points] What is the worst case big-O running time of a single find operation without

path compression if when unioning, the higher numbered root points to the lower numbered

one (union by size is NOT used)? N = total # of elements in all sets. (no explanation

required)

 O(N)

Page 4 of 10 4

2) [14 points total] Hashing:

[4 points each] Draw the contents of the two hash tables below after inserting the values

shown. Show your work for partial credit. If an insertion fails, please indicate which values

fail and attempt to insert any remaining values. The hash function used is H(k) = k mod

tablesize.

a) Quadratic probing b) Linear Probing

12, 5, 19, 2, 23 9, 18, 19, 27, 8, 17

0

1

3

2

4

5

6

0

1

3

2

4

5

6

 7

8

 Page 5 of 10

2) (cont)

c) [1 point] What is the load factor for table a)?

d) [1 point] What is the load factor for table b)?

e) [1 point] Table a) will (circle one):

i. gradually degrade in performance as more values are inserted

ii. possibly fail to find a location on the next insertion

iii. none of the above

f) [1 point] Table b) will (circle one):

i. gradually degrade in performance as more values are inserted

ii. possibly fail to find a location on the next insertion

iii. none of the above

g) [2 points] Given an open addressing hash table where quadratic probing is used to resolve

collisions, what would be the worst case big-O runtime of rehashing the values if we assume

that the original tablesize = N
2
 (before re-hashing) and there are currently N items in the hash

table? (no explanation required)

Page 6 of 10 6

3) [6 points total] Graphs

a) [2 points] Draw both the adjacency matrix and adjacency list representations of this

graph. For this problem, assume there are no implicit self loops (e.g. an edge from A

to A). That is, unless there is a self loop explicitly drawn in the graph, there should

not be one in the representation.

Adjacency Matrix: Adjacency List:

What is the worst case big-O running time of the following operations (use V and E rather

than N in your answers). No explanation is required.

b) [2 points] Find the in-degree of a single vertex whose graph is stored in an adjacency

matrix.

O(V)

c) [2 points] Find the out-degree of a single vertex whose graph is stored in an

adjacency list.

O(V) (O(d) where d is the out degree also accepted)

A

C

B

B

D

B

B

B

B

B

 Page 7 of 10

4) [7 points total] Graphs

Use the following graph for the questions on this page:

a) [2 points] If possible, list two valid topological orderings of the nodes in the graph

above. If there is only one valid topological ordering, list that one ordering. If there

is no valid topological ordering, state why one does not exist.

A, B, C, D, E

A, C, B, D, E

b) [2 points] What is the worst case big-O running time of topological sort for a graph

represented as an adjacency list implemented with a queue? (use V and E rather than

N in your answer) No explanation is needed.

O(V+E) (O(E) also accepted)

c) [2 points] This graph is: (Circle all that are true):

complete strongly connected directed

undirected acyclic weakly connected

d) [1 point] What is the in-degree of node D?

2

A

C

B

B

D

B

B

B

B

B

E

B

B

5

5

1

7

4

5

4

8

2

Page 8 of 10 8

5) [6 points] Graphs – Give an exact answer (NOT an answer in big-O) to each question

below in terms of V (the number of vertices in the graph). Do NOT use E in your answers.

No explanation needed.

a) What is the maximum number of edges possible in a directed graph if self loops are not

allowed?

V
2
– V or V (V-1)

b) What is the minimum number of edges possible in a connected undirected graph that does

not have self loops?

 V - 1

c) What is the minimum degree of a vertex in a complete undirected graph that has self

loops?

 V

 Page 9 of 10

6) [8 points] Memory Hierarchy & Locality: Examine the code example below:

a = 3;

b = 100;

c = 68;

d = 2;

w[10] = (50 * c) + 12;

for (i = 1; i < 100; i++) {

 a = a * 7;

 j = x[i] + x[i+1];

 k = y[1] + c;

e += d + z[i] + 10;

}

Considering only their use in the code segment above, for each of the following variables,

indicate below what type of locality (if any) is demonstrated. Please circle all that apply

(you may circle more than one item for each variable):

a spatial locality temporal locality no locality

b spatial locality temporal locality no locality

c spatial locality temporal locality no locality

d spatial locality temporal locality no locality

w spatial locality temporal locality no locality

x spatial locality temporal locality no locality

y spatial locality temporal locality no locality

z spatial locality temporal locality no locality

Page 10 of 10 10

7) [12 points total] Running Time Analysis:

 Describe the most time-efficient way to implement the operations listed below.

Assume no duplicate values and that you can implement the operation as a member

function of the class – with access to the underlying data structure.

 Then, give the tightest possible upper bound for the worst case running time for each

operation in terms of N. **For any credit, you must explain why it gets this worst case

running time. You must choose your answer from the following (not listed in any

particular order), each of which could be re-used (could be the answer for more than one

of a) -d)).

O(N
2
), O(N

½
), O(N log N), O(N), O(N

2
 log N), O(N

5
), O(2

N
), O(N

3
),

O(log N), O(1), O(N
4
), O(N

N
), O(N

6
), O(N (log N)

 2
), O(N

2
 (log N)

 2
)

a) Merging two binary min-heaps (both implemented using an array) each containing N

elements into a single binary min heap. Explanation:

First concatenate the two heaps into one array, this involves copying each array into the

new array 2N (O(N)), then run Floyd’s buildheap on the new array O(N). Floyd’s

buildheap takes O(N) because the total distance that elements must be percolated down is

O(N) in the worst case.

b) Finding an element in a hash table containing N elements where separate chaining is

used and each bucket points to an unsorted linked list. The table size = N. Explanation:

Worst case is when all N elements hash to the same bucket. Finding an element then

involves doing the hash function to get to the bucket O(1), then searching thru all N elements

to find the one you are looking for. (In the worst case it is the last one in the list or it is not

there.)

c) Finding what the maximum value is in a hash table currently containing N elements, the

hash table is of tablesize N
2
. The hash table uses open addressing and double hashing to

resolve collisions. Explanation:

Since hash tables are not sorted, basically have to search the entire table. Since the table is

size N
2
, this search takes time O(N

2
). There is not really a worst case because you have to

search through all values before you know which one is the maximum.

d) IncreaseKey(k, v) on a binary min heap containing N elements. Assume you have a

reference to the key k. v is the amount that k should be increased. Explanation:

Increasing the value takes O(1) time. Then k may need to be percolated down further in the

heap. In the worst case you are increasing the current minimum in the heap to be so large

that it has to move to the bottom row in the heap. This takes O(log N) since there are max

O(log N) levels in the heap.

a)

b)

c)

d)

