CSE 373: Data Structures and Algorithms
Lecture 24: Course Victory Lap

Instructor: Lilian de Greef
Quarter: Summer 2017

Announcements

* Final Exam on Friday
e Will start at 10:50, will end promptly at 11:50 (even if you’'re late)
* Anything we’ve covered is fair game
* Only bring pencils and erasers
* Turn off / silence and put away any devices (e.g. phone) before exam

* Section
* Will go over solutions for select problems from practice set
* Practice set posted on course webpage (under Sections)

 Recommendation: do the practice problems, then use section to go over the
qguestions you found hardest (there isn’t enough time to cover all of them)

* You’re welcome to go to both sections if you want!

A Plug for Course Evaluations

I'd super appreciate it!

Why did | do things that worked well for you in this class?
* Because students in the past gave feedback to instructors
* The instructors could then act on it and pass that information on (e.g. to me)
* You can think of evals as a way to pay forward the improvements enabled by past students

Comments/ideas for improvements?
* Help future students of 373!
* Help future students of Lilian!
Liked it?
* Help me land a future job in teaching, should | choose it pursue it as my carrier
* And/or nudge and encourage me to do so

Important to have as many student as possible fill it out: avoid sample bias

>>>>>>>>>>>> https://uw.iasystem.org/survey/179902 <<<<<<<<<<<L<L<LLL

Victory Lap!

A celebratory lap around the track or field by the victors (that’s us)!

Wow, we covered a *lot*!

« Abstract Data Types (ADTs) and
Data Structures

« Stacks and Queues

Linked list implementation
Array implementations (including
circular arrays)

« Asymptotic Analysis

Big-O of code snippets

Inductive Proofs

Recurrence Relations (and when
to apply them)

Formal definition of Big-O

Big-O and -Omega, Theta, little-o
and -omega

Amortized Analysis

« Dictionary ADT
¢ Hash Tables

Hash functions, hash values, and
indexing

insert, find, remove

Collisions

Separate chaining

Open addressing / probing
Linear probing

Quadratic probing

Double hashing

Rehashing

¢ Generic trees

Terminology

« Binary trees

Terminology
Representation
Calculating the height
Traversals

« Binary Search Tree (BST)

o find

e insert

« delete (3 cases)

* buildTree

« Terminology (e.g. successor,
predeccessor)

* Balanced vs unbalanced trees

e AVLTrees
« Balance conditions
¢ AVL balance condition
* Rotations
* insert (4 cases)

« Priority Queue ADT

* Heaps

* insert & delete

* Percolations

e Array
representation/implementation

« buildTree (client version and
Floyd's Method /heapify)

o d-heaps

« For each data structure
* Ways to implement
* Pros, Cons, and other reasons to
choose one over the other

Graphs

o

o

General knowledge & terminology
e Mathematical representation
(G=(V,E), etc.)
e Undirected & Directed Graphs

e Self Edges
e Weights

e Paths

e Cycles

e Connectedness
e Trees as graphs
e DAGs
e Density & Sparsity
Graph data structures
e Adjacency Matrix
e Adjacency List
e When to use which and why

Graph algorithms

o

Topological Sort

e Whatitis

e Necessary conditions

« Two algorithms for topological sort
Traversals

e Depth First Search (DFS)

e Breadth First Search (BFS)

e When to use which
Shortest path

e For unweighted graphs

e For weighted graphs (Dijkstra's

algorithm)
e Two approaches to Dijkstra's, when
to use which

Spanning Trees

e Approach #1: DFS

e Approach #2: Add acyclic edges
Minimum Spanning Tree (MST)

e Prim's Algorithm

e Kruskal's Algorithm

\No\Nla\‘

Holy mackerel)

Sorting Algorithms

o

o

o

Terminology
e Stable sort
e In-place sort
e External sort
Comparison Sort
e Insertion Sort
e Selection Sort
e Heapsort (including in-place version)
e Merge Sort (including time- & space-
saving versions)
e Quicksort (including different pivot

rules)
e Using cutoffs
Other Sorts

e Conditions that let you use them
e Bucket Sort (a.k.a. Bin Sort)
e Radix Sort
How to sort massive data
e What algorithms make the most
sense and why
e Howtosort
For each algorithm:
e Worst- best-case scenarios & run
times
e Other pro's/con's of each
e When to use which

General Algorithms Knowledge

o

o

o

Analyzing algorithms
e Correctness (less emphasis here)
e Efficiency
Several algorithm types
e Greedy algorithms
e Dynamic programming
e Divide-and-conquer
P vs NP

glimey"
Ho
‘ ang,

Software Design: Preserving Abstractions

°

© 000 0O0

Abstraction (what it is, why it's important)

Memory representation (call stack, heap space, program counter, etc.)
Aliasing and mutations, how they're problematic

Copy-in

Copy-out

Immutability (e.g. using the 'final' keyword)

Deep copies & deep immutability (and why)

Parallelism

°

o oo

o

Terminology

Parallelism vs Concurrency

Shared memory & race conditions

Threads / Fork-join programming
« How to use in Java (subclass, create 'thread' object, start(), join())
e What happens under the hood

Divide-and-conquer approach and why

Map & Reduce

Analysis (including Amdahl's Law)

Design decisions

o
o

o

Ability to ask questions about problem to inform solution
How to analyze/justify a decision
o Time efficiency
e Space efficiency
* How parallelizable (in a few cases)
Fluency with data structures & algorithms concepts/knowledge
e Purposes a data structure is well-suited for and why
= Available operations
= Efficiency of basic operations
= Space usage (conceptually)
e Pro's and con's of different algorithms

5\'\de\‘
ted Lecture b 8
~pasS
copY P

What is a Data Structure?

What should | put
my sandwich in?

* On super high level: a container for data
* Real-world examples of containers:

¢ 1.86U 107737 9

P 430

The crux of this course

* Understanding your data structures and algorithms to choose the
right one for the job.

 Fundamental CS skill

 After this course, | want you to be able to
* Make good design choices
* Justify and communicate design decisions

Tool to aid us: Asymptotic Analysis

* For & while loops
e Recursive Methods
* Formal definition of worst-case

* Average Case

Stack and Queue ADTs

Dictionary ADT

Priority Queue ADT

Graphs

Graph Algorithms

* DFS

* BFS

* Dijkstra’s

* Spanning Trees
* MSTs

* Prim’s
e Kruskal’s

Sorting Algorithms

* Insertion

* Selection

* Heap

* Merge

* Quick

* Bucket/Bin
* Radix

Types of Algorithms

* Greedy
* Dynamic Programming
* Divide-and-Conquer

* P and NP classes of algorithms

Other things

* Coding Style

* Preserving Abstractions

* Parallelism

Where next?

At UW, lots of upper-division CSE courses available!
(https://www.cs.washington.edu/prospective students/undergrad/admissions/nonmajor)

e CSE 154: Web Programming

Developing Websites and client and server side software

CSE 374: Intermediate Programming Concepts and Tools
Concepts of lower-level programming (C/C++) and explicit memory management

CSE 415: Introduction to Artificial Intelligence
Knowledge representation, logical and probabilistic reasoning, learning, language understanding, intro
to game theory

CSE 417: Algorithms and Computation Complexity

NP Complete problems, undecidable problems, graph theory and complexity

e ...and more!

Tons of resources outside UW, like free classes!

* Coursera (https://www.coursera.org/browse/computer-science) epursera

* Machine Learning * Neural Networks

* Mobile / Web / Game Development * Interaction Design

* Data Science * Python

* Cybersecurity * More theory (algorithms, principles, etc.)
* Networks * Computational Neuroscience

* R Programming e ..and more!

¢ Codecademy (https://www.codecademy.com/)

* HTML & CSS * JavaScript

* Making websites * Python

* SQL * Ruby

e Git * ..and more!

code

* Interactive, game-like way to learn Git with visuals:

http://learngitbranching.js.org/

cademy

Books! So many books! [Loam Yous |

CRACKING THE

CODING
INTERVIEW

150 Programming Questions and Solutions

Ian H. Witten & Eibe Frank

Gayle Laakmann McDowell
. 1] his ning Tools and Technique
! SECOND EDITION

f
f

Haskell for
Great Good!

A Beginner’s Guide

Microsoft

CODE 2

COMPLETE
e
-

MICHAEL SIPSER

Digital Design and
Computer Architecture

SECOND EDITION

A practical handbook of software c

Steve McConnell
Twoifne winner of the Softyare Deveidpment Mag

David Money Harris & Sarah L. Harris

m Comrighted Matertel

Learn a new language!

* Python: https://www.learnpython.org/
* Haskell: http://learnyouahaskell.com/chapters

o C++: http://www.learncpp.com/

* Scala: http://www.scala-lang.org/documentation/
* Ruby: https://www.codecademy.com/learn/ruby

* PHP: https://www.codecademy.com/learn/php

e Racket: https://learnxinyminutes.com/docs/racket/

There are resources of 100’s of languages online. Pick one and mess with it!

Learn to code games!

e Using Unity: https://www.udemy.com/unitycourse/

* Using ActionScript:
https://www.siteground.com/tutorials/actionscript/

 Make an Android App (using mostly Java):
http://developer.android.com/training/basics/firstapp/index.html

... and so much more!

Create cool/useful things with code
* And even post/maintain it on GitHub for others to see/contribute

Fork peoples projects on GitHub and read their code
Contribute to open source projects
Participate in a hackathon

Create an account on StackOverflow
* Ask and answer questions!

Learn how to write scripts to automate things you don’t like spending time on!

Thank you, TAs!

A. What is helping you learn in this class?

Office Hours

Accessible Teacher and TAs during office hours [90 %]
e “Lots of office hours!” (G1)

“Office hours are awesome!” (G2)

“Homework, a lot of office hours” (G3)
“Section and office hours” (G8)

“Lots of office hours, really accessible piazza -> lots of resources” (G10)

Thank you, students!

For

 Participating in class (Questions! Answers! Follow-up questions!)
* Takes willingness and courage!

 Participating in polls and disucssions

» Attending section and office hours
* For the staff, that makes it worth our while to put in the effort ©

e Occasionally laughing at my jokes
* or groaning or head-shaking or at least putting up with them

» Attendance (for a summer class especially!)
 Putting effort into learning the material
* Great attitude!

Question 1:

Given a list of integers, find the highest
obtainable by concatenating them together.

For example: given [9, 918, 917], result =
For example: given [1, 112, 113], result =

value

9918917
1131121

Given a list of integers, find the highest value
obtainable by concatenating them together.

For example: given [9, 918, 917], result = 9918917
For example: given [1, 112, 113], result = 1131121

Question 2:

Given a very large file of integers (more than you can
store in memory), return a list of the largest 100
numbers in the file

Given a very large file of integers (more than you can
store in memory), return a list of the largest 100
numbers in the file

Question 3:

Given an unsorted array of values, find the 2nd
biggest value in the array.

(Harder alternative: Find the k’th biggest value
in the array)

Given an unsorted array of values, find the 2nd
biggest value in the array.

Question 4:

Given a list of strings, write a method that returns the frequency
of the word with the highest frequency.

(Harder version)

Given a list of strings, write a method that returns a sorted list
of words based on frequency

Given a list of strings, write a method that returns the frequency
of the word with the highest frequency.

Question 5:

Your task 1is to store a directory of employees who work at a company.
Important operations include the ability to add an employee to the
directory, to determine whether someone works at the company (based
on name), and be able to print all of the employees in alphabetical
order. What data structure would you use and why?

Question 6:

You have recipes that each have a list of ingredients and
instructions. Although most recipes do an okay job of listing
ingredients in the same order as the instructions use them, they
don’t always and often have mistakes. How would you fix their
ordering?

Question 7:

You later decided that you’d rather have the ingredients listed by what kind of
measuring spoons they use (so you can measure everything and changing spoons as
little as possible) but otherwise keep the ordering the same. Conveniently, each
ingredient also lists a quantity and the correct measuring spoon size. How would you
re-order the ingredients?

Example input:

(1, half-tsp, salt),

(1, cup, sugar),

(2, Tbsp, vanilla),

(1, cup, butter),

(2, cup, flour),

(1, tsp, baking powder),
(3, Tbsp, egg)

Output would have order of:
half-tsp, tsp, Tbsp, cup

You later decided that you’d rather have the ingredients listed by what kind of measuring spoons they
use (so you can measure everything and changing spoons as little as possible) but otherwise keep the
ordering the same. Conveniently, each ingredient also lists a quantity and the correct measuring spoon
size. How would you re-order the ingredients?

Example input:

(1, half-tsp, salt),

(1, cup, sugar),

(2, Tbsp, vanilla),

(1, cup, butter),

(2, cup, flour),

(1, tsp, baking powder),
(3, Tbsp, egg)

Output would have order of:

half-tsp, tsp, Tbsp, cup

