
Instructor:	Lilian	de	Greef
Quarter:	Summer	2017

CSE	373:	Data	Structures	and	Algorithms
Lecture	24:	Course	Victory	Lap



Today

• Not	introducing	new	material	anymore
• Announcements
• Exam,	section
• A	plug	for	course	evaluations

• Victory	Lap!
• A	tour	of	material	we’ve	covered
• Pointers	to	where	you	can	go	next

• Practice	problems

←	(review)

←	(review)

←	(telling	you	about	review	on	Thursday)



Announcements

• Final	Exam	on	Friday
• Will	start	at	10:50,	will	end	promptly	at	11:50	(even	if	you’re	late)	so	be	early
• Anything	we’ve	covered	is	fair	game	
• Only	bring	pencils	and	erasers
• Turn	off	/	silence	and	put	away	any	devices	(e.g.	phone)	before	exam

• Section
• Will	go	over	solutions	for	select	problems	from	practice	set
• Practice	set	posted	on	course	webpage	(under	Sections)
• Recommendation:	do	the	practice	problems,	then	use	section	to	go	over	the	
questions	you	found	hardest	(there	isn’t	enough	time	to	cover	all	of	them)
• You’re	welcome	to	go	to	both	sections	if	you	want!



A	Plug	for	Course	Evaluations
• I’d	super	appreciate	it!

• Why	did	I	do	things	that	worked	well	for	you	in	this	class?
• Because	students	in	the	past	gave	feedback	to	instructors
• The	instructors	could	then	act	on	it	and	pass	that	information	on	(e.g.	to	me)
• You	can	think	of	evals as	a	way	to	pay	forward	the	improvements	enabled	by	past	students

• Comments/ideas	for	improvements?	
• Help	future	students	of	373!
• Help	future	students	of	Lilian!

• Liked	it?	
• Help	me	land	a	future	job	in	teaching,	should	I	choose	it	pursue	it	as	my	carrier
• And/or	nudge	and	encourage	me	to	do	so

• Important	to	have	as	many	student	as	possible	fill	it	out:	avoid	sample	bias

>>>>>>>>>>>>	https://uw.iasystem.org/survey/179902 <<<<<<<<<<<<<<<



Victory	Lap!

A	celebratory	lap	around	the	track	or	field	by	the	victors	(that’s	us)!



Wow,	we	covered	a	*lot*!



What	is	a	Data	Structure?
• On	super	high	level:	a	container	for	data
• Real-world	examples	of	containers:

What	should	I	put	
my	sandwich	in?



The	crux	of	this	course

• Understanding	your	data	structures	and	algorithms	to	choose	the	
right	one	for	the	job.
• Fundamental	CS	skill
• After	this	course,	I	want	you	to	be	able	to
• Make	good	design	choices
• Justify	and	communicate	design	decisions



Tool	to	aid	us:	Asymptotic	Analysis

• For	&	while	loops

• Recursive	Methods

• Formal	definition	of	worst-case

• Average	Case



Stack	and	Queue	ADTs



Dictionary	ADT



Priority	Queue	ADT



Graphs



Graph	Algorithms

• DFS
• BFS
• Dijkstra’s
• Spanning	Trees
• MSTs
• Prim’s
• Kruskal’s



Sorting	Algorithms

• Insertion
• Selection
• Heap
• Merge
• Quick
• Bucket/Bin
• Radix



Types	of	Algorithms

• Greedy

• Dynamic	Programming

• Divide-and-Conquer

• P	and	NP	classes	of	algorithms



Other	things

• Coding	Style

• Preserving	Abstractions

• Parallelism



Wow,	we	covered	a	*lot*!



Where	next?
At	UW,	lots	of	upper-division	CSE	courses	available!
(https://www.cs.washington.edu/prospective_students/undergrad/admissions/nonmajor)

• CSE	154:	Web	Programming
Developing	Websites	and	client	and	server	side	software

• CSE	374:	Intermediate	Programming	Concepts	and	Tools
Concepts	of	lower-level	programming	(C/C++)	and	explicit		memory	management

• CSE	415:	Introduction	to	Artificial	Intelligence
Knowledge	representation,	logical	and	probabilistic	reasoning,	learning,	language	understanding,	intro	
to	game	theory

• CSE	417:	Algorithms	and	Computation	Complexity
NP	Complete	problems,	undecidable	problems,	graph	theory	and	complexity

• … and	more!



Tons	of	resources	outside	UW,	like	free	classes!
• Coursera	(https://www.coursera.org/browse/computer-science)

• Codecademy (https://www.codecademy.com/)

• Interactive,	game-like	way	to	learn	Git	with	visuals:	
http://learngitbranching.js.org/

• Machine	Learning
• Mobile	/	Web	/	Game	Development
• Data	Science
• Cybersecurity
• Networks
• R	Programming

• Neural Networks
• Interaction	Design
• Python
• More	theory	(algorithms,	principles, etc.)
• Computational	Neuroscience
• … and	more!

• HTML	&	CSS
• Making websites
• SQL
• Git

• JavaScript
• Python
• Ruby
• … and	more!



Books!	So	many	books!



Learn	a	new	language!

• Python: https://www.learnpython.org/
• Haskell:	http://learnyouahaskell.com/chapters
• C++:	http://www.learncpp.com/
• Scala:	http://www.scala-lang.org/documentation/
• Ruby:	https://www.codecademy.com/learn/ruby
• PHP:	https://www.codecademy.com/learn/php
• Racket:	https://learnxinyminutes.com/docs/racket/

There	are	resources	of	100’s	of	languages	online.	Pick	one	and	mess	with	it!



Learn	to	code	games!

• Using	Unity:	https://www.udemy.com/unitycourse/

• Using	ActionScript:	
https://www.siteground.com/tutorials/actionscript/

• Make	an	Android	App	(using	mostly	Java):
http://developer.android.com/training/basics/firstapp/index.html



...	and	so	much	more!
• Create	cool/useful	things	with	code

• And	even	post/maintain	it	on	GitHub	for	others	to	see/contribute

• Fork	peoples	projects	on	GitHub	and	read	their	code

• Contribute	to	open	source	projects

• Participate	in	a	hackathon

• Create	an	account	on	StackOverflow
• Ask	and	answer	questions!

• Learn	how	to	write	scripts	to	automate	things	you	don’t	like	spending	time	on!



Thank	you,	TAs!



Thank	you,	students!

For
• Participating	in	class	(Questions!	Answers!	Follow-up	questions!)

• Takes	willingness	and	courage!
• Participating	in	polls	and	disucssions
• Attending	section	and	office	hours

• For	the	staff,	that	makes	it	worth	our	while	to	put	in	the	effort	J
• Occasionally	laughing	at	my	jokes

• or	groaning	or	head-shaking	or	at	least	putting	up	with	them
• Attendance	(for	a	summer	class	especially!)
• Putting	effort	into	learning	the	material
• Great	attitude!



(Y’all okay	with	taking	a	group	selfie	to	help	me	
commemorate	my	first	time	teaching?)



Let’s	practice!
With	writing	algorithms,	with	choosing	data	structures



Question	1:
Given a list of integers, find the highest value 
obtainable by concatenating them together.

For example: given [9, 918, 917], result = 9918917
For example: given [1, 112, 113], result = 1131121

-Convert all numbers to strings
-Sort numbers based on largest first number, 
break ties by moving on to next digit if it’s 
greater than the previous



Question	2:
Given a very large file of integers (more than you can 
store in memory), return a list of the largest 100 
numbers in the file

Create min-heap, h
Add first 100 values to h
while there are remaining numbers:

x = next number
if x > h.getMin():

h.deleteMin()
h.add(x)

create new list, l
while h.isEmpty():

l.add(h.deleteMin())
return l



Question	3:
Given an unsorted array of values, find the 2nd
biggest value in the array.

(Harder alternative: Find the k’th biggest value 
in the array)



Given an unsorted array of values, find the 2nd
biggest value in the array.

sort input_array
return input_array[len – 2]

max = -infinity
2nd_max = -infinity
for each value, v in input_array:

if v > max:
2nd_max = max
max = v

return 2nd_max

max-heap h = heapify(input_array)
h.removeMax()
Return h.removeMax()



Question	4:
Given a list of strings, write a method that returns the frequency 
of the word with the highest frequency.

(Harder version)

Given a list of strings, write a method that returns a sorted list 
of words based on frequency



Given a list of strings, write a method that returns the frequency 
of the word with the highest frequency.

max = 0
map from string->int, map
for each string, s:

if !map.contains(s):
map.put(s,0)

map.put(s, map.get(s) + 1)
if map.get(s) > max:

max = 0



Question	5:
Your task is to store a directory of employees who work at a company. 
Important operations include the ability to add an employee to the 
directory, to determine whether someone works at the company (based 
on name), and be able to print all of the employees in alphabetical 
order. What data structure would you use and why?



Question	6:
You have recipes that each have a list of ingredients and 
instructions. Although most recipes do an okay job of listing 
ingredients in the same order as the instructions use them, they 
don’t always and often have mistakes. How would you fix their 
ordering?



Question	7:
You later decided that you’d rather have the ingredients listed by what kind of 
measuring spoons they use (so you can measure everything and changing spoons as 
little as possible) but otherwise keep the ordering the same. Conveniently, each 
ingredient also lists a quantity and the correct measuring spoon size. How would you 
re-order the ingredients?

Example input: 
(1, half-tsp, salt), 
(1, cup, sugar), 
(2, Tbsp, vanilla),
(1, cup, butter), 
(2, cup, flour),
(1, tsp, baking powder),
(3, Tbsp, egg)

Output would have order of:
half-tsp, tsp, Tbsp, cup



Is	there	life	after	a	data	structures	course?

No.	You	won’t	be	able	to	look	at	things	the	same	way	ever	again.	The	
lunch	line	is	now	a	queue.	The	DMV	is	a	priority	queue.	Maps	are	
graphs.	You	don’t	take	plates	from	the	top	of	the	stack	anymore.	You	
pop	them.	Trees	that	don’t	have	enough	leaves	need	balancing.	And	
they	look	upside	down.

I’m	sorry,	but	after	data	structures,	life	as	you	know	it	is	over.

(from	the	internet)


