CSE 373: Data Structures and Algorithms

Lecture 23: Parallelism: Map, Reduce, Analysis

Instructor: Lilian de Greef
Quarter: Summer 2017

Today

* More on parallelism
* Map & Reduce
* Analysis of Efficiency

* Reminder:
e Come visit my office hours to pick up midterm

Cool Homework 4 Extra Credit!

Outline

Done:
* How to write a parallel algorithm with fork and join

* Why using divide-and-conquer with lots of small tasks is best

* Combines results in parallel
* (Assuming library can handle “lots of small threads”)

Now:

* More examples of simple parallel programs that fit the “map” or “reduce”
patterns -

* Teaser: Beyond maps and reductions
* Asymptotic analysis for fork-join parallelism
* Amdahl’s Law

What else looks like this?

e Saw summing an array went from O(n) sequential to O(1og n) parallel

(assuming a lot of processors and very large n)
* Exponential speed-up in theory (n / 1og n grows exponentially)

NSNS NS N, SN AR

\+/ \+/ \+/ _I_/

\+/ \+/ (
_

N\

e Anything that can use results from two halves and merge them in O(1)
time has the same property...

Examples

* Maximum or minimum element ‘Z

oAbt o 37

el s e Qest
13 7

* Check for an element satisfying some property 2.4 .
* Find left-most element satisfying some property 2.q .

Reductions

e Computations of this form are called reductions
0O 0066000

W

* Produce single answer from collection via an associative operator

!
* Associative operator: .C (a »((lmC)) — ,((,C(Q)\b N ¢> \ J0eS T
! 0\[&/{
* Examples: max, sum, product, count ... PN
* max: \,qu((&,wwk‘((k\) = W\ay(vv\ﬁ)d(ﬁ’lo’)_) ¢>
°* sum: & + (Lﬂ—c§ = Ca*\o> C

e product: o % (Lt () = (Q*Q’*’C

* Non-examples: subtraction, exponentiation, median, ...

« subtraction: o — (|- ¢) # (o- L,} - C

Maps (Data Parallelism)

e A operates on each element of a collection independently to create
a new collection of the same size 5006
O O O O
1 P T3 101 SC)
OO0 00 00

* Example: Vector addition

VU input 6 4 16 10 16 14 2 8
; > '
N input % ﬁO -6 6 2 6 8 7
V t \q output | 8 14 | 22 | 16 | 18 | 20 | 10 | 15
int[] vector add(int[] arrl, int[] arr2) {
(arrl.length == arr2.length);
result = int[arrl.length];
(1i=0, 1 < arrl.length; i++) {
result[i] = arrl[i] + arr2[il];

}

result;

Maps and reductions

Maps and reductions: the “workhorses” of parallel programming
e By far the two most important and common patterns

%4 ¢ Learn to recognize when an algorithm can be written in terms of maps and
reductions

* Use maps and reductions to describe (parallel) algorithms

* Programming them becomes “trivial” with a little practice
* Exactly like sequential for-loops seem second-nature

/\,\K(_ Q“,(\(4y B t(d—ﬁ
Practice: Map or Reduce? o — =y = 71 dom

For each of the following example scenarios, would you use map or reduce?

o eolleckion?

N & \[o.k\/\l/‘:

In the poll, vote for all that you would use reduce on.

oty

Mark all the tasks in a to-do list as “done”

Get the total cost of a shopping list

Get the number of times someone said “like” or “um” in a transcription
Double a recipe by multiplying the amount for each ingredient by 2
Change driving directions to use “km” instead of “miles”

mm oo wrE

Find out whether a particular item you want to buy is in a store inventory

Beyond maps and reductions

III

 Some problems are “inherently sequentia
“Six ovens can’t bake a pie in 10 minutes instead of an hour”

* But not all parallelizable problems are maps and reductions

* Cool example that we don’t have time for: “parallel prefix”, a clever
algorithm to parallelize the problem that this sequential code solves

input 6 4 16 10 16 14 2 8
N Ed
output 6—) 10 - 26 36 52 66 68 76
int[] prefix sum(int[] input) {
int[] output = int [input.length];
output[0] = 1input[0];

(int 1=1; 1 < input.length; 1i++)
output[i] = output[i-1]+inputli];
output;

MapReduce on computer clusters

* You may have heard of Google’s “map/reduce”
* Or the open-source version Hadoop

* |dea: Perform maps/reduces on data using many machines
* The system takes care of distributing the data and managing fault tolerance

* You just write code to map one element and reduce elements to a combined
result

e Separates how to do recursive divide-and-conquer from what
computation to perform

» Separating concerns is good software engineering

Speed-up from Parallelization

Moore’s Law

2,600,000,000

1,000,000,000

An observation on the

semiconductor industry: the 100,000,000 -
density of transistors doubles
roughly every 2.5 years E 10000000
J(_L /§ 8
w —
g,(ﬁ)(‘l \/ ijﬁ .§ 1,000,000
9200 O g
|_
100,000
Expected to reach limit
around 2025 (can only fit so 10000
many atoms in one space!) ’
2,300 ~

N2 /TKP-L

Microprocessor Transistor Counts 1971-2011 & Moore's Law

16-Core SPARC T3
Six-Core Core i
Six-Core Xeon 7400\ 2 @10-Core Xeon Westmere-EX
Dual-Core kanium® ® -8-core POWEP7
AMD K10 ’t § -
POWERGe ‘g *.

ftanium 2 with 9MB cache *_ _Six-Core 0
ANMD K10@ Core i7 (Qu

'80[9 2 Duo

&AID KB

%ureﬁ!anlum Tukvnla
Core Xeon Nehalem

evon 2400

ftanium 28

. ~ @Barton
Pentium 4¢

o:IB K.

_AMD Kb

‘ @ Pentium |l
Pentium I

@ AND K5
_®Pentium

@ Atom

curve shows transistor
count doubling every
two years

80486e

go3s6e,”
802868

68000@ 080186

8086e #8088
085,

800 g @6800
8080 |~ ®z80

8008 L 1105 6502
4004 “pea 1802

=1

t;\b GJQ)

f T T T 1
1971 1980 1990 2000 2011

Date of introduction

Analyzing algorithms

* Like all algorithms, parallel algorithms should be:
* For our algorithms so far, we’ll focus on efficienc
(the correctness of summing numbers, etc. are n(‘j as interesting/insightful)

e Want ao\/w\r’to’h ¢ \bouwwn
* Want to analyze the algorithm without regard to a specific number of Tvo (¢3SoYS

* Here: Identify the “lso s~ W2 cain do ” if the underlying thread-scheduler
does its part

Work and Span

Let Tp be the running time if there are P processors available

Two key measures of run-time:
. / /
: How long it would take 1 processor = | 1
 Just “sequentialize” the recursive forking

: How long it would take infinite processors = |

* The longest dependence-chain
* Example: O(1og n) for summing an array
* Notice having > n/2 processors is no additional help

Note: parallel programs can be

O u r S| m p | e exa m p | eS more complex than our examples

Picture showing all the “stuff that happens” during a reductioEor a
map: it’s a (conceptual!) DAG(/\DH re e d Ac\/c(;c qu(

OL(\VJ \OLQ

> /—% bage <canle §)
L e
,,-ej v l—& S (ww\"" (>

Connecting to performance

S D)
* Recall: Tp = running time if we use P N Cof3 0
* Work =T, = sum of run-time of al\ noeS “in the DAG
* That lonely processor does everything
* Any topological sort is a legal execution
e O(n) for maps and reductions

* Span =T_=sum of run-time of all nodeS on \MO?’“; erf“"em the DAG
* Note: costs are on the nodes, not the edges =
* Our infinite army can do everything that is ready to be done, but still has to wait for
earlier results
* O(1og n) for simple maps and reductions

Speed-up

Parallelizing algorithms is about decreasing span without
increasing work too much

on P processors: ~ |\ /T€
is the maximum possible speed-up: T, /’\’

* At some point, adding processors won’t help
* What that point is depends on the span

* |n practice we have P processors. How well can we do? on
~ g * We cannot do better than () /ro<>> (“must obey the spﬂﬁ})
* We cannot do better thano C/r /P> (“must do all the work”)

goptes ~Q65§LQ T = D(M@X(lm, 7/r>>

Examples

Best possible T, = O(max(T_,, T,/P))

n
* In the algorithms seen so far (e.g., sum an array): #© Al werle | }/f
* T,=0(n) sty At spen s 090
* T,=0(logn)
* So expect at best (ignores overheads): Ty = O (W\oo((/06"\) V\/p>>

* Suppose instead:
* T,=0(n?) = wUL‘\
* T,=0(n) & span 5
* So expect at best (ignores overheads): T, — 'C)(vv\&x (% ., N)}
A
-

f

Amdahl’s Law (mostly bad news)

 So far: analyze parallel programs in terms of work and span

—

* In practice, typically have parts of programs that parallelize well...
* Such as maps/reductions over arrays
...and parts that don’t parallelize at all

* Such as reading a linked list, getting input, doing computations where each
needs the previous step, etc.

Amdahl’s Law (mostly bad news)

Let the work (time to run on 1 processor) be 1 unit time

Let S be the portion of the execution that can’t be parallelized

Then: Tt:S‘V(l'S) :j.

Suppose parallel portion parallelizes perfectly (generous assumption)

Then: Te = S (1- 3>/P

So the overall speedup with P processors is (Amdahl’s Law):
\\/ka - L/(S’ + (’l’g3/\>>
And the parallelism (infinite processors) is:

’F,/—rw — 1/5

Why such bad news

wvﬂu[\“"(\

e Suppose 33% of a program’s execution is sequential
* Then a billion processors won’t give a speedup over 3

* From 1980-2005, 12 years was long enough to get wedup
* Now suppose in 12 years, clock speed is the same but you get 256 processors
instead of 1 o
* For 256 processors to get at least 100x speedup, we need
100<1/ (S +(1-S)/256)
Which means S <£.0061 (i.e., 99.4% perfectly parallelizable)
—_ N

All is not lost

Amdahl’s Law is a bummer!
* Unparallelized parts become a bottleneck very quickly
* But it doesn’t mean additional processors are worthless

* We can find new parallel algorithms
* Some things that seem sequential are actually parallelizable

* We can change the problem or do new things

* Example: computer graphics use tons of parallel processors
* Graphics Processing Units (GPUs) are massively parallel!

Moore and Amdahl

* Moore’s “Law” is an observation about the progress of the

semiconductor industry

* Transistor density doubles roughly every 18 months

* Amdahl’s Law is a mathematical theorem

* Diminishing returns of adding more processors

* Both are incredibly important in designing computer systems

Practice problems

. . V. a S{fan
uestion 1: SRR (A S G 7

< \’(ESWen an array that contains the values 1

¢ b

hrough ‘n’ two times each, find the onesie-! ‘fj/o()

. ¥ jumber Yhatis containedednly 1 times, lor sot’
— ¥/\<‘/’>\/$O<L’> ygov’k‘lwxﬂé
g\ 06t or Olnhoge) 7 Bind =2 PInRan — A A (wmon)
L Se o
vZ: VaghS —r{w L e x T i
(G (x) gl Sz) = 0G)
,y@ﬁm < reinneve () < 0() A > 0 (‘\/\\
5 Hash Set 0600 £

Frﬁ (SC) .\(/\%o
vt b se valie o HlaghSet & 06 P\1;(@,\ ™

