
Instructor:	Lilian	de	Greef
Quarter:	Summer	2017

CSE	373:	Data	Structures	and	Algorithms
Lecture	23:	Parallelism:	Map,	Reduce,	Analysis



Today

• More	on	parallelism
• Map	&	Reduce	
• Analysis	of	Efficiency

• Reminder:	
• Come	visit	my	office	hours	to	pick	up	midterm



Cool	Homework	4	Extra	Credit!



Outline

Done:
• How	to	write	a	parallel	algorithm	with	fork	and	join
• Why	using	divide-and-conquer	with	lots	of	small	tasks	is	best

• Combines	results	in	parallel
• (Assuming	library	can	handle	“lots	of	small	threads”)

Now:
• More	examples	of	simple	parallel	programs	that	fit	the	“map”	or	“reduce”	
patterns
• Teaser:	Beyond	maps	and	reductions
• Asymptotic	analysis	for	fork-join	parallelism
• Amdahl’s	Law



What	else	looks	like	this?
• Saw	summing	an	array	went	from	O(n)	sequential	to	O(log n)	parallel	
(assuming	a	lot of	processors	and	very	large	n)
• Exponential	speed-up	in	theory	(n	/	log n	grows	exponentially)

• Anything	that	can	use	results	from	two	halves	and	merge	them	in	O(1)	
time	has	the	same	property…

+ + + + + + + +
+ + + +

+ +
+



Examples

• Maximum	or	minimum	element

• Check	for	an	element	satisfying	some	property

• Find	left-most	element	satisfying	some	property

• Counts



-

Reductions
• Computations	of	this	form	are	called	reductions

• Produce	single	answer	from	collection	via	an	associative	operator
• Associative	operator:	
• Examples:	max,	sum,	product,	count	…
• max:
• sum:
• product:

• Non-examples:	subtraction,	exponentiation,	median,	…
• subtraction:



-

Maps	(Data	Parallelism)
• A	map operates	on	each	element	of	a	collection	independently	to	create	
a	new	collection	of	the	same	size

• Example:	Vector	addition

int[] vector_add(int[] arr1, int[] arr2){
assert (arr1.length == arr2.length);
result = new int[arr1.length];
FORALL(i=0; i < arr1.length; i++) {

result[i] = arr1[i] + arr2[i];
}
return result;

}

input

input

6 4 16 10 16 14 2 8

2 10 6 6 2 6 8 7

output 8 14 22 16 18 20 10 15



Maps	and	reductions

Maps	and	reductions:	the	“workhorses”	of	parallel	programming

• By	far	the	two	most	important	and	common	patterns

• Learn	to	recognize	when	an	algorithm	can	be	written	in	terms	of	maps	and	
reductions

• Use	maps	and	reductions	to	describe	(parallel)	algorithms

• Programming	them	becomes	“trivial”	with	a	little	practice
• Exactly	like	sequential	for-loops	seem	second-nature



Practice:	Map	or	Reduce?

For	each	of	the	following	example	scenarios,	would	you	use	map or	reduce?
In	the	poll,	vote	for	all	that	you	would	use	reduce on.

A. Mark	all	the	tasks	in	a	to-do	list	as	“done”
B. Get	the	total	cost	of	a	shopping	list	
C. Get	the	number	of	times	someone	said	“like”	or	“um”	in	a	transcription
D. Double	a	recipe	by	multiplying	the	amount	for	each	ingredient	by	2
E. Change	driving	directions	to	use	“km”	instead	of	“miles”
F. Find	out	whether	a	particular	item	you	want	to	buy	is	in	a	store	inventory



Beyond	maps	and	reductions
• Some	problems	are	“inherently	sequential”

“Six	ovens	can’t	bake	a	pie	in	10	minutes	instead	of	an	hour”

• But	not	all	parallelizable	problems	are	maps	and	reductions

• Cool	example	that	we	don’t	have	time	for:	“parallel	prefix”,	a	clever	
algorithm	to	parallelize	the	problem that	this	sequential	code solves

int[] prefix_sum(int[] input){
int[] output = new int[input.length];
output[0] = input[0];
for(int i=1; i < input.length; i++)

output[i] = output[i-1]+input[i];
return output;

}

input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76



MapReduce	on	computer	clusters

• You	may	have	heard	of	Google’s	“map/reduce”
• Or	the	open-source	version	Hadoop

• Idea:	Perform	maps/reduces	on	data	using	many	machines
• The	system	takes	care	of	distributing	the	data	and	managing	fault	tolerance
• You	just	write	code	to	map	one	element	and	reduce	elements	to	a	combined	
result

• Separates	how	to	do	recursive	divide-and-conquer	from	what	
computation	to	perform
• Separating	concerns	is	good	software	engineering



Speed-up	from	Parallelization



Moore’s	Law
An	observation	on	the	
semiconductor	industry:	the	
density	of	transistors	doubles	
roughly	every	2.5	years

Expected	to	reach	limit	
around	2025	(can	only	fit	so	
many	atoms	in	one	space!)



Analyzing	algorithms

• Like	all	algorithms,	parallel	algorithms	should	be:

• For	our	algorithms	so	far,	we’ll	focus	on	efficiency	
(the	correctness	of	summing	numbers,	etc.	are	not	as	interesting/insightful)
• Want	

• Want	to	analyze	the	algorithm	without	regard	to	a	specific	number	of	

• Here:	Identify	the	“																																							”	if the	underlying	thread-scheduler
does	its	part



Work	and	Span

Let	TP be	the	running	time	if	there	are	P processors	available

Two	key	measures	of	run-time:

• Work:	How	long	it	would	take	1	processor	=	
• Just	“sequentialize”	the	recursive	forking

• Span:	How	long	it	would	take	infinite	processors	=	
• The	longest	dependence-chain
• Example:	O(log n)	for	summing	an	array	

• Notice	having	>	n/2	processors	is	no	additional	help



Our	simple	examples
Picture	showing	all	the	“stuff	that	happens”	during	a	reduction	or	a	
map:	it’s	a	(conceptual!)	DAG

Note:	parallel	programs	can	be	
more	complex	than	our	examples



Connecting	to	performance

• Recall:	TP =	running	time	if	we	use

• Work	=	T1 =	sum	of	run-time	of																									in	the	DAG
• That	lonely	processor	does	everything
• Any	topological	sort	is	a	legal	execution
• O(n)	for	maps	and	reductions

• Span	=	T¥ =	sum	of	run-time	of																																																										in	the	DAG
• Note:	costs	are	on	the	nodes,	not	the	edges
• Our	infinite	army	can	do	everything	that	is	ready	to	be	done,	but	still	has	to	wait	for	
earlier	results

• O(log n)	for	simple	maps	and	reductions



Speed-up
Parallelizing	algorithms	is	about	decreasing	span	without	

increasing	work	too	much

• Speed-up on	P processors:

• Parallelism is	the	maximum	possible	speed-up:
• At	some	point,	adding	processors	won’t	help
• What	that	point	is	depends	on	the	span

• In	practice	we	have	P processors.		How	well	can	we	do?
• We	cannot	do	better	than																							(“must	obey	the	span”)
• We	cannot	do	better	than	 (“must	do	all	the	work”)



Examples

Best	possible	TP		= O(max(T¥ ,		T1/P))

• In	the	algorithms	seen	so	far	(e.g.,	sum	an	array):
• T1	=	O(n)
• T¥=	O(log n)
• So	expect	at	best	(ignores	overheads):

• Suppose	instead:
• T1	=	O(n2)
• T¥=	O(n)
• So	expect	at	best	(ignores	overheads):



Amdahl’s	Law	(mostly	bad	news)

• So	far:	analyze	parallel	programs	in	terms	of	work	and	span

• In	practice,	typically	have	parts	of	programs	that	parallelize	well…

• Such	as	maps/reductions	over	arrays

…and	parts	that	don’t	parallelize	at	all

• Such	as	reading	a	linked	list,	getting	input,	doing	computations	where	each	
needs	the	previous	step,	etc.



Amdahl’s	Law	(mostly	bad	news)

Let	the	work (time	to	run	on	1	processor)	be	1	unit	time

Let	S be	the	portion	of	the	execution	that	can’t	be	parallelized

Then:	

Suppose	parallel	portion	parallelizes	perfectly	(generous	assumption)

Then:

So	the	overall	speedup	with	P processors	is	(Amdahl’s	Law):

And	the	parallelism	(infinite	processors)	is:



Why	such	bad	news

T1 /	TP =	1	/	(S	+	(1-S)/P)	 T1 /	T¥ =	1	/	S

• Suppose	33%	of	a	program’s	execution	is	sequential
• Then	a	billion	processors	won’t	give	a	speedup	over	3

• From	1980-2005,	12	years	was	long	enough	to	get	100x	speedup
• Now	suppose	in	12	years,	clock	speed	is	the	same	but	you	get	256	processors	
instead	of	1
• For	256	processors	to	get	at	least	100x	speedup,	we	need

100	£ 1	/	(S +	(1-S)/256)
Which	means	S £ .0061		(i.e.,	99.4%	perfectly	parallelizable)	

bwahaha!



All	is	not	lost

Amdahl’s	Law	is	a	bummer!
• Unparallelized parts	become	a	bottleneck	very	quickly
• But	it	doesn’t	mean	additional	processors	are	worthless

• We	can	find	new	parallel	algorithms
• Some	things	that	seem	sequential	are	actually	parallelizable

• We	can	change	the	problem	or	do	new	things
• Example:	computer	graphics	use	tons	of	parallel	processors

• Graphics	Processing	Units	(GPUs)	are	massively	parallel!



Moore	and	Amdahl

• Moore’s	“Law”	is	an	observation	about	the	progress	of	the	
semiconductor	industry
• Transistor	density	doubles	roughly	every	18	months

• Amdahl’s	Law	is	a	mathematical	theorem
• Diminishing	returns	of	adding	more	processors

• Both	are	incredibly	important	in	designing	computer	systems



Practice	problems



Given an array that contains the values 1 
through ‘n’ two times each, find the one 
number that is contained only 1 time.

Question	1:


