
Instructor:	Lilian	de	Greef
Quarter:	Summer	2017

CSE	373:	Data	Structures	and	Algorithms
Lecture	22:	Introduction	to	Multithreading	and	Parallelism

Today:	

Introduction	to	multithreading	and	parallelism
• Parallelism vs	Concurrency
• Shared	memory
• Threads	in	Java

So	far	most	or	all	of	your	study	of	computer	science	has	assumed

One	thing	happened	at	a	time
Called	sequential	programming – everything	part	of	one	sequence

It’s	all	been	lies!

Well,	not	all	lies…

But	most	computers	these	days	have	multiple	cores,	and	most	
languages	support	using	them.

These	additional	cores	create	major	opportunities	(and	challenges!)
• Divide	work	among	threads	of	execution and	
synchronize ()	them
• Parallel	activity	can	provide	speed-up
i.e.	more	throughput:
• May	need	to	support	concurrent	access to	data	(multiple	threads	
operating	on	data)

What	to	do	with	multiple	processors?

• Run	multiple	totally	different	programs	at	the	same	time
(Though	could	already	do	that	with	time-slicing)

• Do	multiple	things	at	once	in	one	program
• Requires	rethinking	everything	from	asymptotic	
complexity	to	how	to	implement	data-structure	
operations

-

Parallelism	vs.	Concurrency

There	is	some	connection:
– Common	to	use	threads for	both
– If	parallel	computations	need	access	to	shared	resources,	then	
the	concurrency	needs	to	be	managed

We	will	focus	on	parallelism,	avoiding	concurrency	issues

Parallelism:
Use	extra	resources	to	
solve	a	problem	faster

Concurrency:
Correctly	and	efficiently	manage	
access	to	shared	resources

An	analogy

CS1	idea:	A	program	is	like	a	recipe	for	a	cook
• One	cook	who	does	one	thing	at	a	time!	(Sequential)

Parallelism:
• Have	lots	of	potatoes	to	slice?	
• Hire	helpers,	hand	out	potatoes	and	knives
• But	too	many	chefs	and	you	spend	all	your	time	coordinating

Concurrency:
• Lots	of	cooks	making	different	things,	but	only	4	stove	burners
• Want	to	allow	access	to	all	4	burners,	but	not	cause	spills	or	incorrect	burner	settings

Our	model	for	(unshared)	memory

Shared	memory
The	model	we	will	assume	is	shared	memory with	explicit	threads

Old	story:	A	running	program	has
• One	program	counter (tracks	which	current	statement	is	executing)
• One	call	stack (made	of	stack	frames that	hold	local	variables)	
• Objects	in	the heap created	by	memory	allocation	(i.e.,	new)	

• (nothing	to	do	with	data	structure	called	a	heap)
• Static	fields belong	to	the	class	and	not	an	instance	(or	object)	of	the	class.	Only	one	for	all	instances	
of	a	class.	

pc=…

…

HeapStack

The	model	we	will	assume	is	shared	memory with	explicit	threads
New	story:
• A	set	of	threads,	each	with	its	own	program	counter	&	call	stack

• No	access	to	another	thread’s	local	variables
• Threads	can	(implicitly)	share	static	fields	/	objects

• To	communicate,	write	somewhere

…

pc=…

…

pc=…

…

pc=…

…

Unshared:
locals	and
control

Shared:
objects	and
static	fields

Shared	memory

Our	Needs

To	write	a	shared-memory	parallel	program,	need	new	primitives	from	a	
programming	language	or	library

• Ways	to	create	and	run	multiple	things	at	once
• Let’s	call	these	things

• Ways	for	threads	to	share	memory
• Often	just	have	threads	with	references	to	the	same	objects

• Ways	for	threads	to	coordinate	(a.k.a.	synchronize)
• A	way	for	one	thread	to	 for	another	to	finish
• [Other	features	needed	in	practice	for	concurrency]

Race	Condition	Example

• You	have	$500	in	bank	account
• Someone	transfers	$200	to	you.	Thread	A	updates	your	balance.
• At	the	same	time,	you	spend	$50.	Thread	B	updates	your	balance.

Java	basics

Learn	java.lang.Thread
• In	real	life,	use	Java’s	ForkJoin Framework	instead!

To	get	a	new	thread	running:
1. Define	a	subclass	t of	java.lang.Thread,	overriding	run
2. Create	an	object	of	class	t
3. Call	that	object’s	startmethod

• start sets	off	a	new	thread,	using	run as	its	“main”

What	if	we	instead	called	the	runmethod	of	t?
• This	would	just	be	a	normal	method	call,	in	the	current	thread

Let’s	see	how	to	share	memory	and	coordinate	via	an	example…

Parallelism	idea:	Example
Example:	Sum	elements	of	a	large	array	
Idea:		Have	4	threads	simultaneously	sum	1/4	of	the	array
• Warning:	This	is	an	inferior	first	approach,	but	it’s	usually	good	to	start	with	something	naïve	
works

ans0 ans1 ans2 ans3
+

ans

• Create	4	 ,	each	given	a	portion	of	the	work
• Call	start() on	each	thread	object	to	actually	 it	in	parallel
• for	threads	to	finish	using	join()
• Add	together	their	4	answers	for	the

First	attempt:	create	Thread	subclass

Because	we	must	override	a	no-arguments/no-result	run,	
we	use	 to	communicate	across	threads

class SumThread extends java.lang.Thread {

int lo; // arguments
int hi;
int[] arr;

int ans = 0; // result

SumThread(int[] a, int l, int h) {
lo=l; hi=h; arr=a;

}

public void run() { //override must have this type
for(int i=lo; i < hi; i++)

ans += arr[i];
}

}

First	attempt,	continued
class SumThread extends java.lang.Thread {

int lo, int hi, int[] arr; // arguments
int ans = 0; // result
SumThread(int[] a, int l, int h) { … }
public void run(){ … } // override

}

int sum(int[] arr){ // can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for(int i=0; i < 4; i++) // do parallel computations

ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
for(int i=0; i < 4; i++) // combine results

ans += ts[i].ans;
return ans;

}

Second	attempt

int sum(int[] arr){ // can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for(int i=0; i < 4; i++){// do parallel computations

ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
ts[i].start(); // start not run

}
for(int i=0; i < 4; i++) // combine results

ans += ts[i].ans;
return ans;

}

class SumThread extends java.lang.Thread {
int lo, int hi, int[] arr; // arguments
int ans = 0; // result
SumThread(int[] a, int l, int h) { … }
public void run(){ … } // override

}

Third	attempt	(correct	in	spirit)

int sum(int[] arr){// can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for(int i=0; i < 4; i++){// do parallel computations

ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
ts[i].start();

}
for(int i=0; i < 4; i++) { // combine results

ts[i].join(); // wait for helper to finish!
ans += ts[i].ans;

}
return ans;

}

class SumThread extends java.lang.Thread {
int lo, int hi, int[] arr; // arguments
int ans = 0; // result
SumThread(int[] a, int l, int h) { … }
public void run(){ … } // override

}

Java	detail:	code	has	1	compile	error	because	joinmay	throw	
java.lang.InterruptedException
In	basic	parallel	code,	should	be	fine	to	catch-and-exit

1. Start	with	one	thread

2. Main	thread	reaches	sum()	method,	creates	4	new	threads

3. Each	new	thread	begins	its	start()method,	and	iterates	over	its	
section	of	the	array	

4. Each	new	thread	may	end	at	different	times,	so	the	main	thread	
must	wait	until	they	are	all	done	(calls	join())	before	summing	
them	up

What’s	Happening?

(space	for	notes)

1. Start	with	one	thread

pc=…

…

Main

What’s	Happening?

2.			Main	thread	reaches	sum()	method,	creates	4	new	threads

pc=…

…

pc=…

…

pc=…

…

pc=…

…pc=…

…

Main

T1 T2

T3 T4

What’s	Happening?

3.		Each	new	thread	begins	its	start()	method,	and	iterates	over	its	
section	of	the	array	

pc=…

…

pc=…

…

pc=…

…

pc=…

…pc=…

…

Main

T1 T2

T3 T4

What’s	Happening?

What’s	Happening?
4.		Each	new	thread	may	end	at	different	times,	so	the	main	thread	must	
wait	until	they	are	all	done	(calls	join())	before	summing	them	up

pc=…

…

pc=…

…

pc=…

…

pc=…

…pc=…

…

Main

T1 T2

T3 T4

Join	(not	the	most	descriptive	word)

• The	joinmethod	is	valuable	for	coordinating	this	kind	of	
computation
• Caller	blocks	until/unless	the	receiver	is	done	executing	(meaning	the	call	to	
run returns)
• Else	we	would	have	a	 on	ts[i].ans
(answer	would	depend	on	what	finishes	first)

• This	style	of	parallel	programming	is	called	“fork/join”

Shared	memory?

• Fork-join	programs	(thankfully)	do	not	require	much	focus	on	sharing	
memory	among	threads

• But	in	languages	like	Java,	there	is	memory	being	shared.		
In	our	example:
• lo,	hi,	arr fields	written	by	“main”	thread,	read	by	helper	thread
• ans field	written	by	helper	thread,	read	by	“main”	thread

• When	using	shared	memory,	you	must	avoid	race	conditions
• We	will	stick	with	join to	do	so

How	many	threads	to	use?
Several	reasons	why	this	is	a	poor	parallel	algorithm

1. Want	code	to	be	reusable	and	efficient	across	platforms
• “Forward-portable”	as	core	count	grows
• So	at	the	very least,	parameterize	by	the

int sum(int[] arr, int numTs){
int ans = 0;
SumThread[] ts = new SumThread[numTs];
for(int i=0; i < numTs; i++){
ts[i] = new SumThread(arr,(i*arr.length)/numTs,

((i+1)*arr.length)/numTs);
ts[i].start();

}
for(int i=0; i < numTs; i++) {

ts[i].join();
ans += ts[i].ans;

}
return ans;

}

How	many	threads	to	use?

2. Want	to	use	(only)	processors	“available	to	you	now”

• Not	used	by	other	programs	or	threads	in	your	program
• Maybe	caller	is	also	using	parallelism
• Available	cores	can	change	even	while	your	threads	run

// numThreads == numProcessors??

int sum(int[] arr, int numTs){
…

}

How	many	threads	to	use?
3. Though	unlikely	for	sum,	in	general	subproblems may	take	

significantly	different	amounts	of	time
• Example:	Apply	method	f to	every	array	element,	but	maybe	f is	much	

slower	for	some	data	items
• Example:	Is	a	large	integer	prime?

• If	we	create	4	threads	and	all	the	slow	data	is	processed	by	1	of	them,	we	
won’t	get	nearly	a	4x	speedup
• Example	of	a	load	imbalance

How	many	threads	to	use?
A	solution	to	all	these	problems	is	to	use	lots	of	threads,	far	more	than	

the	number	of	processors
• But	this	will	require	changing	our	algorithm
• [And	using	a	different	Java	library]

ans0 ans1 … ansN

ans

1. Forward-portable:	Lots	of	helpers	each	doing	a	small	piece
2. Processors	available:	Hand	out	“work	chunks”	as	you	go
3. Load	imbalance:	No	problem	if	slow	thread	scheduled	early	enough
• Variation	probably	small	anyway	if	pieces	of	work	are	small

Naïve	algorithm
Suppose	we	create	1	thread	to	process	every	1000	elements

Then	combining	results	will	have	arr.length / 1000 additions	
• Linear	in	size	of	array	(with	constant	factor	1/1000)
• Previously	we	had	only	4	pieces	(constant	in	size	of	array)

In	the	extreme,	if	we	create	1	thread	for	every	1	element,	the	loop	to	combine	
results	has	length-of-array	iterations

int sum(int[] arr){
…
int numThreads = arr.length / 1000;
SumThread[] ts = new SumThread[numThreads];
…

}

A	better	idea

This	is	straight-forward	to	implement	using	divide-and-conquer
• Parallelism	for	the	recursive	calls
• Each	thread	creates	two	new	threads,	lets	them	run	and	then	sums	up	their	
answer
• Below	some	threshold	(when	the	array	gets	small	enough)	thread	just	runs

+ + + + + + + +

+ + + +

+ +
+

Divide-and-conquer	to	the	rescue!
class SumThread extends java.lang.Thread {

int lo; int hi; int[] arr; // arguments
int ans = 0; // result
SumThread(int[] a, int l, int h) { … }
public void run(){ // override

if(hi – lo < SEQUENTIAL_CUTOFF)
for(int i=lo; i < hi; i++)

ans += arr[i];
else {

SumThread left = new SumThread(arr,lo,(hi+lo)/2);
SumThread right= new SumThread(arr,(hi+lo)/2,hi);
left.start();
right.start();
left.join(); // don’t move this up a line – why?
right.join();
ans = left.ans + right.ans;

}
}

}
int sum(int[] arr){

SumThread t = new SumThread(arr,0,arr.length);
t.run();
return t.ans;

}

Divide-and-conquer	really	works
• Divide-and-conquer	parallelizes	the	result-combining
• If you	have	enough	processors,	total	time	is	height	of	the	tree:	O(log n)	
(optimal,	 faster	than	sequential	O(n))

+ + + + + + + +

+ + + +

+ +

+

Being	realistic

• In	theory,	you	can	divide	down	to	single	elements,	do	all	your	result-
combining	in	parallel	and	get	optimal	speedup	(P	is	number	of	processors)
• Total	time	O(n/P +	log n)

• In	practice,	creating	all	those	threads	and	communicating	swamps	the	
savings,	so:
• Use	a	sequential	cutoff,	e.g.	around	500-1000	threads

• Eliminates	almost	all the	recursive	thread	creation	(bottom	levels	of	tree)
• Instead	of	creating	two	recursive	threads;	create	one	and	do	the	other	“yourself”

• Cuts	the	number	of	threads	created	by	another	2x

Being	realistic,	part	2

• Even	with	all	this	care,	Java’s	threads	are	too	“heavyweight”
• Constant	factors	that	affect	performance,	especially	space	overhead
• Creating	20,000	Java	threads	is	just	a	bad	idea	L

• The	ForkJoin Framework is	designed	to	meet	the	needs	of	
divide-and-conquer	fork-join	parallelism
• In	the	Java	standard	libraries
• Library’s	implementation	is	a	fascinating	but	advanced	topic
• Names	of	methods	and	how	to	use	them	slightly	different

