
Instructor:	Lilian	de	Greef
Quarter:	Summer	2017

CSE	373:	Data	Structures	and	Algorithms
Lecture	21:	Finish	Sorting,	P	vs	NP



Today

• Announcements
• Finish	up	sorting
• Radix	Sort
• Final	comments	on	sorting

• Complexity	Theory:	P	=?	NP



Announcements

• Final	Exam:
• Next	week
• During	usual	lecture	time	(10:50am	- 11:50am)
• Cumulative	(so	all	material	we’ve	covered	in	class	is	fair	game)
• ...	but	with	emphasis	on	material	covered	after	the	midterm
• Date?



The	Big	Picture

Surprising	amount	of	juicy	computer	science:	2-3	lectures…
Simple

algorithms:
O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
W(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort (avg)
…

Bucket sort
Radix sort

External
sorting

How???
• Change	the	model	– assume				
more	than	“compare(a,b)”



Radix	sort

• Radix	=	“the	base	of	a	number	system”
• Examples	will	use	10	because	we	are	used	to	that
• In	implementations	use	larger	numbers

• For	example,	for	ASCII	strings,	might	use	128

• Idea:
• Bucket	sort	on	one	digit	at	a	time

• Number	of	buckets	=	radix
• Starting	with	least significant	digit
• Keeping	sort	stable

• Do	one	pass	per	digit
• Invariant:	After	k passes	(digits),	the	last	k digits	are	sorted

• Aside:	Origins	go	back	to	the	1890	U.S.	census



Radix	Sort:	Example

Input:

478
537
9

721
3
38
143
67

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Output:

First	pass:	bucket	sort	by	one’s	digit

Second	pass:	stable	bucket	sort	by	ten’s	digit

Third	pass:	stable	bucket	sort	by	hundred’s	digit



(extra	space	for	scratch	work	/	notes)



Analysis

Input	size:	n
Number	of	buckets	=	Radix:	B
Number	of	passes	=	“Digits”:	P

Work	per	pass	is	1	bucket	sort:

Total	work	is

Compared	to	comparison	sorts,	sometimes	a	win,	but	often	not
• Example:	Strings	of	English	letters	up	to	length	15

• Run-time	proportional	to:	15*(52	+	n)	
• This	is	less	than	n log	n	only	if	n >	33,000
• Of	course,	cross-over	point	depends	on	constant	factors	of	the	implementations

• And	radix	sort	can	have	poor	locality	properties



Comments	on	Sorting	Algorithms



Sorting	massive	data

• Need	sorting	algorithms	that	minimize	disk/tape	access	time:
• Quicksort	and	Heapsort	both	jump	all	over	the	array,	leading	to	
random	disk	accesses
• Merge	sort	scans	linearly	through	arrays,	leading	to	(relatively)	
sequential	disk	access

• Merge	sort	is	the	basis	of	massive	sorting

• Merge	sort	can	leverage	multiple	disks



External	Merge	Sort
• Sort	900	MB	using	100	MB	RAM

• Read	100	MB	of	data	into	memory
• Sort	using	conventional	method	(e.g.	quicksort)
• Write	sorted	100MB	to	temp	file
• Repeat	until	all	data	in	sorted	chunks	(900/100	=	9	total)

• Read	first	10	MB	of	each	sorted	chuck,	merge	into	remaining	10	MB
• writing	and	reading	as	necessary
• Single	merge	pass	instead	of	log	n
• Additional	pass	helpful	if	data	much	larger	than	memory

• Parallelism	and	better	hardware	can	improve	performance
• Distribution	sorts	(similar	to	bucket	sort)	are	also	used



Wrap-up	on	Sorting
• Simple	O(n2)	sorts	can	be	fastest	for	small	n

• Insertion	sort	(latter	linear	for	mostly-sorted)
• Good	“below	a	cut-off”	for	divide-and-conquer	sorts

• O(n	log n)	sorts
• Heap	sort,	in-place,	not	stable,	not	parallelizable
• Merge	sort,	not	in	place	but	stable	and	works	as	external	sort
• Quick	sort,	in	place,	not	stable	and	O(n2)	in	worst-case

• Often	fastest,	but	depends	on	costs	of	comparisons/copies

• W (n log n) is	worst-case	and	average	lower-bound	for	sorting	by	comparisons

• Non-comparison	sorts
• Bucket	sort	good	for	small	number	of	possible	key	values
• Radix	sort	uses	fewer	buckets	and	more	phases

• Best	way	to	sort?		



Source:	https://xkcd.com
/1185/



Complexity	Theory:	P	vs	NP
Just	a	small	taste	of	Complexity	Theory



“Easy”	Problems	for	the	Computer

Sorting	a	list	of	n	numbers

Multiplying	two	n	x	n	matrices

3  5  2  7
1  6  8  9
2  4  6 10
9  3  2 12

1  5  5  4
5 12  8  6
7  6  1  5
9 23  5  8

=n

n n

n

n



“Easy”	Problems	for	the	Computer

Shortest	Path	Algorithm Minimum	Spanning	Tree	Algorithms

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9

2

4 5

Edsgar Dijkstra



“Hard”	Problems	for	the	Computer

The		Knapsack	Problem

I	want	to	carry	as	much	money’s	worth	as	I	
can	that	still	fits	in	my	bag!	What	do	I	pack?



“Hard”	Problems	for	the	Computer

The		Traveling	Salesperson	Problem

Seattle

Tehran

Beijing

Berlin

Moscow

São	Paulo

5411
6775

6685

5217
5058

4583

6356

2185

1004

3608

7325 1533

3488
7577

10	933

I’ll	leave	Seattle	to	sell	goods,	visiting	
each	city	only	once,	and	return	to	
Seattle.	What’s	the	shortest	route?



“Hard”	Problems	for	the	Computer

Find	a	Hamiltonian	path	(a	path	that	visits	each	vertex	exactly	once)

(never	mind	weights	
or	even	returning	to	
our	starting	point!)



Comparing	n2 vs	2n

The	alien’s	computer	performs	109 operations/sec

n	=	10 n	=	30 n	=	50 n	=	70

n2 100
<	1	sec

900
<	1	sec

2500
<	1	sec

4900
<	sec

2n 1024
<	1	sec

n! 3628800
<	1	sec

109
1	sec

1015
11.6	days

1021
31,688	years

1016 years 1048 years 1083 years
(105 x	age	of	the	universe!)



“Easy”	vs	“Hard”	Problems	for	the	Computer

“Polynomial	Time”	=		“Efficient”

Is	an	algorithm	“efficient”	with…

O(n)? O(n	log	n)?O(n2)? O(n10)? O(nlog n)? O(2n)? O(n!)?



Polynomial	Time?
• So	we	know	there	are	polynomial	time	algorithms	to

• Sort	numbers
• Multiply	n	x	n	matrices
• Find	the	shortest	path	in	a	graph
• Find	the	minimum	spanning	tree
• … and	more

• But	the	million	dollar	question	is…
are	there	polynomial	time	algorithms	to	solve
• The	Knapsack	Problem?
• The	Traveling	Salesperson	Problem?
• Finding	Hamiltonian	Paths?
• … and	thousands	more!





P	=	NP?

And	there	are	problems	even	harder	than	NP!

P	(Polynomial	Time)

sort

search

Dijkstra’s

Prim’s

Kruskal’s

NP	(Nondeterministic	
Polynomial	Time)

Hamiltonian	
Path

Traveling	
Salesperson

Knapsackn	x	n	x	n	
Sudoku

SAT



Relevance	of	P	=	NP

NP	contains	lots	of	problems	we	don’t	know	to	be	in	P
• Classroom	Scheduling
• Packing	objects	into	bins
• Scheduling	jobs	on	machines
• Finding	cheap	tours	visiting	a	subset	of	cities	
• Finding	good	packet	routings	in	networks	
• Decryption
...	



With	this	knowledge,	we	can	avoid	saying…

“I	can’t	find	an	efficient	algorithm.	
I	guess	I’m	too	dumb.”

Cartoon	courtesy	of	“Computers	and	Intractability:	A	Guide	to	the	Theory	of	NP-Completeness” by	M.	Garey and	D.	Johnson



But	know	it	isn’t	wise	to	say…

“I	can’t	find	an	efficient	algorithm	because	
no	such	algorithm	is	possible!”

Cartoon	courtesy	of	“Computers	and	Intractability:	A	Guide	to	the	Theory	of	NP-Completeness” by	M.	Garey and	D.	Johnson



And,	instead,	prove	it’s	in	NP	to	then	say…

“I	can’t	find	an	efficient	algorithm,	but	
neither	can	all	these	famous	people.”

Cartoon	courtesy	of	“Computers	and	Intractability:	A	Guide	to	the	Theory	of	NP-Completeness” by	M.	Garey and	D.	Johnson



Source:	https://xkcd.com
/287/



Preparing	for	Final	Exam



Final	Exam	Study	Strategies



Practice	Problem

Given a value ‘x’ and an array of integers, determine 
whether two of the numbers add up to ‘x’




