CSE 373: Data Structures and Algorithms Lecture 21: Finish Sorting, P vs NP

Instructor: Lilian de Greef
Quarter: Summer 2017

Today

- Announcements
- Finish up sorting
- Radix Sort
- Final comments on sorting
- Complexity Theory: P =? NP

Announcements

- Final Exam:
- Next week
- During usual lecture time (10:50am - 11:50am)
- Cumulative (so all material we've covered in class is fair game)
- ... but with emphasis on material covered after the midterm
- Date: Friday

Back to Sorting Algorithms

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures...

- Change the model - assume more than "compare(a,b)"

Radix sort

- Radix = "the base of a number system"
- Examples will use 10 because we are used to that
- In implementations use larger numbers
- For example, for ASCII strings, might use 128
- Idea:
- Bucket sort on one digit at a time
- Number of buckets = radix
- Starting with least significant digit
- Keeping sort stable
- Do one pass per digit
- Invariant: After k passes (digits), the last k digits are sorted
- Aside: Origins go back to the 1890 U.S. census

Radix Sort: Example

$$
\# \text { digits }=3
$$

First. pass: bucket sort by one's digit
Input:

0	1	2	3	4	5	6	7	8	9
	721		3				537	478	9
		143				67	38		

Output:
478
3
537

143
Third pals: stable bucket sort by hundred's digit
478
67

0	1	2	3	4	5	6	7	8	9
3	143			478	537		721		
9									
38									
67									

721

Analysis

\square
Input size: \underline{n}

Number of buckets = Radix: \underline{B}
Number of passes = "Digits": \underline{P}
Work per pass is 1 bucket sort: $O(B+n)$
Total work is $O(P(B+n))$
Compared to comparison sorts, sometimes a win, but often not

- Example: Strings of English letters up to length 15
- Runtime proportional to: $15^{*}(52+n)$
- This is less than n log n only if $n \geq 33,000$
- Of course, cross-over point depend's on constant factors of the implementations
- And radix sort can have poor locality properties

Comments on Sorting Algorithms

Sorting massive data

- Need sorting algorithms that minimize disk/tape access time:
- Quicksort and Heapsort both jump all over the array, leading to expensive random disk accesses
- Merge sort scans linearly through arrays, leading to (relatively) effic ient sequential disk access
- Merge sort is the basis of massive sorting
- Merge sort can leverage multiple disks

External Merge Sort

- Sort 900 MB using 100 MB RAM
- Read 100 MB of data into memory
- Sort using conventional method (e.g. quicksort)
- Write sorted 100 MB to temp file
- Repeat until all data in sorted chunks (900/100 $=9$ total)

101111 Kaumb

- Read first 10 MB of each sorted chuck, merge into remaining 10 MB
- writing and reading as necessary
- Single merge pass instead of log n
- Additional pass helpful if data much larger than memory
- Parallelism and better hardware can improve performance
- Distribution sorts (similar to bucket sort) are also used

Wrap-up on Sorting

- Simple $O\left(n^{2}\right)$ sorts can be fastest for small n
- Insertion sort (latter linear for mostly-sorted)
- Good "below a cut-off" for divide-and-conquer sorts

- O($n \log n$) sorts
- Heap sort, in-place, not stable, not parallelizable
- Merge sort, not in place but stable and works as external sort
- Quick sort, in place, not stable and $O\left(n^{2}\right)$ in worst-case
- Often fastest, but depends on costs of comparisons/copies
- $\Omega(n \log n)$ is worst-case and average lower-bound for sorting by comparisons
- Non-comparison sorts
- Bucket sort good for small number of possible key values
- Radix sort uses fewer buckets and more phases
- Best way to sort?
depends.

Complexity Theory: P vs NP

Just a small taste of Complexity Theory

"Easy" Problems for the Computer

Sorting a list of n numbers

$$
O(n \log n)
$$

Multiplying two $\mathrm{n} \times \mathrm{n}$ matrices
$O\left(n^{3}\right)$

$$
\mathrm{n}\left[\begin{array}{lllr}
3 & 5 & 2 & 7 \\
1 & 6 & 8 & 9 \\
2 & 4 & 6 & 10 \\
9 & 3 & 2 & 12
\end{array}\right]\left[\begin{array}{rrrr}
1 & 5 & 5 & 4 \\
5 & 12 & 8 & 6 \\
7 & 6 & 1 & 5 \\
9 & 23 & 5 & 8
\end{array}\right]=
$$

"Easy" Problems for the Computer

Shortest Path Algorithm

Minimum Spanning Tree Algorithms

$o(|v| \log |v|+|E| \log |v|)$

Edsgar Dijkstra

"Hard" Problems for the Computer

The Knapsack Problem
I want to carry as much money's worth as I
can that still fits in my bag! What do I pack?

$$
\begin{aligned}
& \text { Broke force } \\
& \rightarrow O(n!)
\end{aligned}
$$

"Hard" Problems for the Computer

The Traveling Salesperson Problem

I'll leave Seattle to sell goods, visiting
each city only once, and return to
Seattle. What's the shortest route?

"Hard" Problems for the Computer

Find a Hamiltonian path (a path that visits each vertex exactly once)
(never mind weights or even returning to our starting point!)

Comparing n^{2} vs 2^{n}

The alien's computer performs 10^{9} operations $/ \mathrm{sec}$

"Easy" vs "Hard" Problems for the Computer
"Polynomial Time" = "Efficient"
-O (nc) for some constant c
Is an algorithm "efficient" with...

Polynomial Time?

- So we know there are polynomial time algorithms to
- Sort numbers
- Multiply $\mathrm{n} \times \mathrm{n}$ matrices
- Find the shortest path in a graph
- Find the minimum spanning tree
- ... and more
- But the million dollar question is... are there polynomial time algorithms to solve
- The Knapsack Problem?
- The Traveling Salesperson Problem?
- Finding Hamiltonian Paths?
- ... and thousands more!

Q Rules for the Millennium Prizes \times
(i) www.claymath.org/millennium-problems/rules-millennium-prizes

Rules for the Millennium Prizes

The Clay Mathematics Institute (CMI) has named seven "Millennium Prize Problems." The Scientific $\supset \mathrm{CL}$ Board of CMI (SAB) selected these problems, focusing on important classic questions that have resis of solution over the years. The Doard of Directors of CMI designated a $\$ 7$ million prize fund for the solich. these problems, wit \$1 million all) cated to each. The Directors of CMI, and no other persons or bodnc

B-S-D Conjecture
Hodge Conjecture

Navier-Stokes

$P=N P$?
Riemann Hypothesis \quad ble
Yang-Mills
Poincaré Conjecture the authority to authonzopreyrient from this fund or to modify or interpret these stipulations. The Eion Directors of CMI makes all mathematical decisions for CMI, upon the recommendation of its SAB.

The SAB of CMI will consider a proposed solution to a Millennium Prize Problem if it is a complete

Relevance of $P=N P$

NP contains lots of problems we don't know to be in P

- Classroom Scheduling
- Packing objects into bins
- Scheduling jobs on machines
- Finding cheap tours visiting a subset of cities
- Finding good packet routings in networks
- Decryption

With this knowledge, we can avoid saying...

"I can't find an efficient algorithm. I guess I'm too dumb."

But know it isn't wise to say...

"I can't find an efficient algorithm because no such algorithm is possible!"

And, instead, prove it's in NP to then say...

"I can't find an efficient algorithm, but neither can all these famous people."

Preparing for Final Exam

Final Exam Study Strategies

- Problem sets
- old exams
- section
- Review slides
- remind self of concerts
- List pro's al con's of each data structure or alg
- Study buddies
- Sleep

Practice Problem

Given a value ' x ' and an array of integers, determine whether two of the numbers add up to ' x '

Questions you should have asked me:

1) Is the array in any particular order?
2) Should I consider the case where adding two large numbers could cause an overflow?
3) Is space a factor, in other words, can I use an additional structure(s)?
4) Is this method going to be called frequently with different/the same value of ' x '?
5) About how many values should I expect to see in the array, or is that unspecified?
6) Will ' x ' always be a positive value?
7) Can I assume the array won't always be empty, what if its null?

Practice Problem

Given a value＇x＇and an array of integers，determine whether two of the numbers add up（to＇x＇order？
－Sorted？a paric保（to＇x＇order？OC）if sorted
－how sis are values？
－time vs space efficiency data structures \leftrightarrow additional data sha）？
－how many values？Do we know？
－can＂x＂be negative？\＆values in array？
－can che array，be empty？Null values？

