CSE 373: Data Structures and Algorithms
Lecture 21: Finish Sorting, P vs NP

Instructor: Lilian de Greef
Quarter: Summer 2017

Today

* Announcements

* Finish up sorting
* Radix Sort
* Final comments on sorting

» Complexity Theory: P =? NP

Announcements

* Final Exam:

Next week

* During usual lecture time (10:50am - 11:50am)

Cumulative (so all material we’ve covered in class is fair game)
... but with emphasis on material covered after the midterm
Date: Friday

Back to Sorting Algorithms

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures...

Simple
algorithms:
O(n?)

Insertion sort
Selection sort

Fancier Comparison Specialized Handling
algorithms: lower bound: S huge data
O(n log n) Q(n log n) sets
Heap sort Bucket sort External
Merge sort Radix sort sorting
Quick sort (avg)

How???
* Change the model —assume
more than “compare(a,b)”

Radix sort

* Radix = “the base of a number system”
e Examples will use 10 because we are used to that

* In implementations use larger numbers
* For example, for ASCII strings, might use 128

* |dea:

* Bucket sort on one digit at a time
* Number of buckets = radix
 Starting with significant digit
* Keeping sort
* Do one pass per digit
* Invariant: After k passes (digits), the last k digits are sorted

 Aside: Origins go back to the 1890 U.S. census

Radix Sort: Examp

Input:

478
537
9
121
3
38
143
6’/

e A MgxS = 35
@ass: bucket sort by one’s digit
—0 1 2 | 3 4 5 6 7 8
721 3 3 |43
13 CF | >%
@ass: bucket sort by teﬁ's digit @
—0 | 1 2 3 4 5 6 7 8
3 72 5 | 145 LF 423
il 3 3
@,: bucket sort by Bundred’s digit :
0 1 2 37 4 5 6 7 8
a%t ¢S 473 K33 32| |
%
H

Output:

>3
F

43 %
N

22|

AnalySiS r:z_l L: { \E\»\‘]
Input size: n I \ Lu

Number of buckets = Radix: B)
U\ <R, /\(L C,
Number of passes = “Digits”: P

. | i))
Work per pass is 1 bucket sort: @(% / (\ P o/

Total work is D(P (%H,\)>

Compared to comparison sorts, sometimes a win, but often not

* Example: Strings of English letters up to length 15
* Run-time proportional to: 15*(52 + n)
* Thisis less than nlognonlyif n
* Of course, cross-over point depends on constant factors of the implementations
* And radix sort can have poor locality properties

Comments on Sorting Algorithms

Sorting massive data

* Need sorting algorithms that minimize disk/tape access time:

* Quicksort and Heapsort both jump all over the array, leading to QKF awn
random disk accesses

* Merge sort scans linearly through arrays, leading to (relatively) -m@:\ c !LV\+
sequential disk access

SIVe

* Merge sort is the basis of massive sorting

* Merge sort can leverage multiple disks

External Merge Sort s s e s e R

S 900 MB 100 MB RAM e -
* Sort using
O
* Read 100 MB of data into memory @ @ TD\L L /
» Sort using conventional method (e.g. quicksort) \-Dg’ Z
* Write sorted 100MB to temp file Db n D
* Repeat until all data in sorted chunks (900/100 = 9 total) ~ apm®

Read first 10 MB of each sorted chuck, merge into remaining 10 MB

e writing and reading as necessary
* Single merge pass instead of log n
* Additional pass helpful if data much larger than memory

Parallelism and better hardware can improve performance

Distribution sorts (similar to bucket sort) are also used

Wrap-up on Sorting

8
Si 2 gt gV
* Simple O(n?) sorts can be fastest for small n d&i
* Insertion sort (latter linear for mostly-sorted) (' ’ 0 Cﬁg\
* Good “below a cut-off” for divide-and-conquer sorts C//

O(n 1og n) sorts
* Heap sort, in-place, not stable, not parallelizable
* Merge sort, not in place but stable and works as external sort

external sort
* Quick sort, in place, not stable and O(n?) in worst-case

* Often fastest, but depends on costs of comparisons/copies

Q) (n Log n) is worst-case and average lower-bound for sorting by comparisons

Non-comparison sorts
* Bucket sort good for small number of possible key values
« Radix sort uses fewer buckets and more phases

Best way to sort? ~+f (9{ W §

»

Complexity Theory: P vs NP

Just a small taste of Complexity Theory

“Easy” Problems for the Computer

Sorting a list of n numbers

Ol for ~)

)
Multiplying two n x n matrices O(W
3 5 2 7|[1 5 5 4 i
|16 8 9[|512 8 6| _
2 4 6 10 7 6 1 5 -
9 3 2 12 9 23 5 8

“Easy” Problems for the Computer

Shortest Path Algorithm Minimum Spanning Tree Algorithms

“Hard” Problems for the Computer

The Knapsack Problem

| want to carry as much money’s worth as |
can that still fits in my bag! What do | pack?

o
e «Br& Q)fCQJ

“Hard” Problems for the Com

The Traveling Salesperson Problem

outer

I’ll leave Seattle to sell goods, visiting
each city only once, and return to

Seattle. What's the shortest route?

Seattle 3
Berlin
54711
6775 4
5
Beijing F 3608 Moscow
6356 7 43
8

Sao Paulo 7577 Tehran

“Hard” Problems for the Computer

Find a Hamiltonian path (a path that visits each vertex exactly once)

(never mind weights
or even returning to
our starting point!)

Comparing n? vs 2"

The alien’s computer performs 10° operations/sec

n=10 n =30 n=>50 n=70
y) 100 900 2500 4900
n <1sec <1sec <1sec </Jsec
2n 1024 10° 101> 1021
<1sec 1 sec 11.6 days 31,688 years
n! 3628800 106 years 10% years 10% years
: <1lsec

(10> x age of the universe!)

“Easy” vs “Hard” Problems for the Computer

“ PonnomlaI Time” = “Efficient”

X ¢
@(Y\ > [, Sw< CovsTal
(pos)
Is an algorithm “efficient” with... /V\
O(n/)? 0O(n?)? O(n;}? O(n Ici/)? O(n'en)? O(2" O(n!)?

\/\/\J\X/_V\&

TO(YV\GW\EJ{‘ +in—g o - \)6(\/1/\01,\,\(';»\‘

@

Polynomial Time?

* So we know there are polynomial time algorithms to
e Sort numbers
Multiply n x n matrices P

Find the shortest path in a graph
Find the minimum spanning tree
e ...and more

e But the million dollar question is...
are there polynomial time algorithms to solve N?
* The Knapsack Problem?
* The Traveling Salesperson Problem?
* Finding Hamiltonian Paths?
* ...and thousands more!

® © ® /S Rules for the Millennium Prize X |

C | ® www.claymath.org/millennium-problems/rules-millennium-prizes

5 MILLENNIUM PROBLEMS
ABOUT PROGRAMS MILLENNIUM PROBLEMS PEOPLE PUBLICA

Problems

B-S-D Conjecture

Rules for the Millennium Prizes HodgeConjctre

Riemann Hypothesis

The Clay Mathematics Institute (CMI) has named seven "Millennium Prize Problems.” The Scientific 20U S ———
Board of CMI (SAB) selected these problems, focusing on important classic questions that have resis of Ya"S'M"'S
solution over the years das@gard of Directors of CMI designated a $7 million prize fund for the solch.
these problems, wit cated to each. The Directors of CMI, and no other persons or bo!NC I
the authority to autho peprficnt from this fund or to modify or interpret these stipulations. The gion

Directors of CMI makes all mathematical decisions for CMI, upon the recommendation of its SAB.

The SAB of CMI will consider a proposed solution to a Millennium Prize Problem if it is a complete

e A a0 0 a* s _eN RN N oM b o BY o _xb ___ _a*_ 1

P = NP? > # NF

NP (Nondeterministic
Polynomial Time)

EXPSPACE
1

EXPTIME

Traveling
Salesperson

Hamiltonian
Path

nxnxn

sudoku Knapsack

P (Polynomial Time)

Dijkstra’s

And there are problems even harder than NP!

Relevance of P=NP

NP contains lots of problems we don’t know to be in P
* Classroom Scheduling

* Packing objects into bins

e Scheduling jobs on machines

* Finding cheap tours visiting a subset of cities

* Finding good packet routings in networks

* Decryption

With this knowledge, we can avoid saying...

“I can’t find an efficient algorithm.
| guess I’'m too dumb.”

Cartoon courtesy of “Computers and Intractability: A Guide to the Theory of NP-Completeness” by M. Garey and D. Johnson

But know it isn’t wise to say...

“I can’t find an efficient algorithm because
no such algorithm is possible!”

Cartoon courtesy of “Computers and Intractability: A Guide to the Theory of NP-Completeness” by M. Garey and D. Johnson

And, instead, prove it’s in NP to then say...

200 1 0
.';%}E'l}!’ f: l‘(L) I“ -— &__
L..‘ﬁ ;-' ln pe r(' l (3 $? .'\. (: : g
e A /N -\
;(! (el / '\k o :
'l ll 'l"r'?l T - X o 1
=2) .. Uy
1N f 1 J }‘7 2 Yot \ ()
(N LAY L4 aid |
IR & £&2E==m
LT, '. \ | (! z -'—T—'f J
I/ | }[} \ l'l S et
P 1 J"':—'-Jx' ~
| l l | LS . N
Yy & =
\ -{—'—g‘ﬁ

“I can’t find an efficient algorithm, but
neither can all these famous people.”

Cartoon courtesy of “Computers and Intractability: A Guide to the Theory of NP-Completeness” by M. Garey and D. Johnson

Preparing for Final Exam

Final Exam Study Strategies —

- L{s‘\’ o ’$ % CoWn S
- T(G\O(Q\N\ SeY 3 v) \
0 o\A ewvawr S op:b\ Sty ucto A ﬁ

:
o section — 5’&'\)0(\/ L, uddies

Practice Problem

¢ 9

Given a value ‘x’ and an array of integers, determine

whether two of the numbers add up to ‘X

¢ ’

Questions you should have asked me:

1)
2)

3)
4)
5)
6)
7)

Is the array in any particular order?

Should | consider the case where adding two large numbers could cause an
overflow?

Is space a factor, in other words, can | use an additional structure(s)?

Is this method going to be called frequently with different/the same value of x’?
About how many values should | expect to see in the array, or is that unspecified?
Will ‘x” always be a positive value?

Can | assume the array won’t always be empty, what if its null?

Practice Problem

Given a value ‘x’ and an array of integers, determine

whether two of fhe numbers add up Go "X’ 7 C)(biﬁi/ﬁ
L CY\a v 6 rden . S
/gow— 2 ()(";Y \C’g

7
o Lig ave valnes®

~
- s’ Sp R ,Q‘_(OCC/\QV\C by (Tuse
T Y (N W@%gc%k 7}‘(&& ZL:_;\C/ﬁ 7

