CSE 373: Data Structures and Algorithms Lecture 20: More Sorting

Instructor: Lilian de Greef Quarter: Summer 2017

Today: More sorting algorithms!

- Merge sort analysis
- Quicksort
- Bucket sort
- Radix sort

Divide and conquer

Very important technique in algorithm design

- 1. Divide problem into smaller parts
- 2. Independently solve the simpler parts
 - Think recursion
 - Or parallelism
- 3. Combine solution of parts to produce overall solution

Two great sorting methods are fundamentally divide-and-conquer (Merge Sort & Quicksort)

Merge Sort

Merge Sort: repeatedly...

- Sort the left half of the elements
- Sort the right half of the elements
- Merge the two sorted halves into a sorted whole

To sort array from position lo to position hi:

- If range is 1 element long, it is already sorted!
- Else:
 - Sort from lo to (hi+lo) /2
 - Sort from (hi+lo) /2 to hi
 - Merge the two halves together

Linked lists and big data

We defined sorting over an array, but sometimes you want to sort linked lists

One approach:

- Convert to array:
- Sort:
- Convert back to list:

Merge sort works very nicely on linked lists directly

- Heapsort and quicksort do not
- Insertion sort and selection sort do but they're slower

Merge sort is also the sort of choice for external sorting

- Linear merges minimize disk accesses
- And can leverage multiple disks to get streaming accesses

Analysis

Having defined an algorithm and argued it is correct, we should analyze its running time and space:

To sort *n* elements, we:

- Return immediately if *n*=1
- Else do 2 subproblems of size

and then an

merge

Recurrence relation:

Analysis intuitively

This recurrence is common, you just "know" it's $O(n \log n)$

Merge sort is relatively easy to intuit (best, worst, and average):

- The recursion "tree" will have height
- At each level we do a *total* amount of merging equal to

Analysis more formally

```
(One of the recurrence classics)
```

For simplicity, ignore constants (let constants be) T(1) = 1 T(n) = 2T(n/2) + n = 2(2T(n/4) + n/2) + n = 4T(n/4) + 2n = 4(2T(n/8) + n/4) + 2n = 8T(n/8) + 3n.... $= 2^{k}T(n/2^{k}) + kn$

We will continue to recurse until we reach the base case, i.e. T(1) for T(1), $n/2^{k} = 1$, i.e., log n = k

So the total amount of work is $2^{k}T(n/2^{k}) + kn = 2^{\log n}T(1) + n \log n = n + n \log n = O(n \log n)$

Divide-and-Conquer Sorting

Two great sorting methods are fundamentally divide-and-conquer

- 1. Merge Sort:
 - Sort the left half of the elements (recursively)
 - Sort the right half of the elements (recursively)
 - Merge the two sorted halves into a sorted whole
- 2. Quicksort:
 - Pick a "pivot" element
 - Divide elements into "less-than pivot" and "greater-than pivot"
 - Sort the two divisions (recursively on each)
 - Answer is "sorted-less-than", followed by "pivot", followed by "sorted-greater-than"

Quicksort Overview

- 1. Pick a pivot element
- 2. Partition all the data into:
 - A. The elements less than the pivot
 - B. The pivot
 - C. The elements greater than the pivot
- 3. Recursively sort A and C
- 4. The final answer is A-B-C

(space for notes/scratch)

Think in Terms of Sets

[Weiss]

Example, Showing Recursion

Details

Have not yet explained:

- How to pick the pivot element
 - Any choice is correct: data will end up sorted
 - But as analysis will show, want the two partitions to be about
- How to implement partitioning
 - In linear time
 - In place

Pivots

- Best pivot?
 - Halve each time

- Worst pivot?
 - Greatest/least element
 - Partition of size n 1

Potential pivot rules

While sorting arr from lo to hi-1 ...

- Pick arr[lo] or arr[hi-1]
 - Fast, but worst-case occurs with mostly sorted input
- Pick random element in the range
 - Does as well as any technique, but (pseudo)random number generation can be slow
 - Still probably the most elegant approach
- Median of 3, e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2]
 - Common heuristic that tends to work well

Partitioning

Conceptually simple, but hardest part to code up correctly

• After picking pivot, need to partition in linear time in place

One approach (there are slightly fancier ones):

- 1. Swap pivot with arr[lo]
- 2. Use two fingers i and j, starting at lo+1 and hi-1

```
3. while (i < j)
```

if (arr[j] > pivot) j-else if (arr[i] < pivot) i++</pre>

```
else swap arr[i] with arr[j]
```

4. Swap pivot with arr[i] *

*skip step 4 if pivot ends up being least element

Example

- Step one: pick pivot as median of 3
 - **lo** = 0, **hi** = 10

0	1	2	3	4	5	6	7	8	9
8	1	4	9	0	3	5	2	7	6

• Step two: move pivot to the lo position

Example

Often have more than one swap during partition – this is a short example

Analysis

• Best-case: Pivot is always the median

T(0) = T(1) = 1 T(n) = -- linear-time partition Same recurrence as merge sort:

• Worst-case: Pivot is always smallest or largest element

T(0) = T(1) = 1 T(n) =Basically same recurrence as selection sort:

- Average-case (e.g., with random pivot)
 - O(n log n), not responsible for proof (in text)

Cutoffs

- For small *n*, all that recursion tends to cost more than doing a quadratic sort
 - Remember asymptotic complexity is for
- Common engineering technique: switch algorithm below a cutoff
 - Reasonable rule of thumb: use insertion sort for *n* < 10
- Notes:
 - Could also use a cutoff for merge sort
 - Cutoffs are also the norm with parallel algorithms
 - Switch to sequential algorithm
 - None of this affects asymptotic complexity

Cutoff pseudocode

```
void quicksort(int[] arr, int lo, int hi)
{
    if(hi - lo < CUTOFF)
        insertionSort(arr,lo,hi);
    else
        ...
}</pre>
```

Notice how this cuts out the vast majority of the recursive calls

- Think of the recursive calls to quicksort as a tree
- Trims out the bottom layers of the tree

Practice with comparison sort!

A comparison sorting algorithm is operating on an array of 8 integers. After its 4th loop or recursive call, the array looks like:

4	8 11	15	42	29	18	37
---	------	----	----	----	----	----

Which of these sorting algorithms can it be?

- A) Heapsort
- B) Merge sort
- C) Insertion sort
- D) Quicksort using Median of 3

(space for notes/scratch)

How Fast Can We Sort?

- Heapsort & mergesort have $O(n \log n)$ worst-case running time
- Quicksort has $O(n \log n)$ average-case running time
- These bounds are all tight, actually $\Theta(n \log n)$
- Comparison sorting in general is Ω (n log n)
 - An amazing computer-science result: proves all the clever programming in the world cannot comparison-sort in linear time

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures...

Bucket Sort (a.k.a. BinSort)

- If all values to be sorted are *known* to be integers between 1 and *K* (or any small range):
 - Create an array of size K
 - Put each element in its proper bucket (a.k.a. bin)
 - If data is only integers, no need to store more than a *count* of how times that bucket has been used
- Output result via linear pass through array of buckets

count array				
1				
2				
3				
4				
5				

• Example:

K=5

input (5, 1, 3, 4, 3, 2, 1, 1, 5, 4, 5)

output

Analyzing Bucket Sort

- Overall: O(n+K)
 - Linear in *n*, but also linear in *K*
 - $\Omega(n \log n)$ lower bound does not apply because this is not a comparison sort
- Good when K is smaller (or not much larger) than n
 - We don't spend time doing comparisons of duplicates
- Bad when K is much larger than n
 - Wasted space; wasted time during linear O(K) pass
- For data in addition to integer keys, use list at each bucket

Bucket Sort with Data

- Most real lists aren't just keys; we have data
- Each bucket is a list (say, linked list)
- To add to a bucket, insert in O(1) (at beginning, or keep pointer to last element)

Example: spice level; scale 1-5;	count array	
1 = mild, 5 = <i>very</i> spicy Input=		
5: Habanero	2	
3: Jalapeño	3	
5: Ghost pepper	4	
1: Bell pepper	-	
	5	

- Result:
- Easy to keep 'stable'; Habanero still before Ghost pepper

Radix sort

- Radix = "the base of a number system"
 - Examples will use 10 because we are used to that
 - In implementations use larger numbers
 - For example, for ASCII strings, might use 128
- Idea:
 - Bucket sort on one digit at a time
 - Number of buckets = radix
 - Starting with *least* significant digit
 - Keeping sort *stable*
 - Do one pass per digit
 - Invariant: After k passes (digits), the last k digits are sorted
- Aside: Origins go back to the 1890 U.S. census

Radix Sort: Example

Output:

Analysis

Input size: *n* Number of buckets = Radix: *B* Number of passes = "Digits": *P*

Work per pass is 1 bucket sort:

Total work is

Compared to comparison sorts, sometimes a win, but often not

- Example: Strings of English letters up to length 15
 - Run-time proportional to: 15*(52 + *n*)
 - This is less than *n* log n only if *n* > 33,000
 - Of course, cross-over point depends on constant factors of the implementations
 - And radix sort can have poor locality properties

Interactive Visualizations

Comparison Sort (including quicksort):

<u>http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html</u>

Bucket Sort:

- <u>http://www.cs.usfca.edu/~galles/visualization/BucketSort.html</u>
- <u>http://www.cs.usfca.edu/~galles/visualization/CountingSort.html</u>

Radix Sort:

<u>http://www.cs.usfca.edu/~galles/visualization/RadixSort.html</u>

Sorting massive data

- Need sorting algorithms that minimize disk/tape access time:
 - Quicksort and Heapsort both jump all over the array, leading to expensive random disk accesses
 - Merge sort scans linearly through arrays, leading to (relatively) efficient sequential disk access
- Merge sort is the basis of massive sorting
- Merge sort can leverage multiple disks

External Merge Sort

- Sort 900 MB using 100 MB RAM
 - Read 100 MB of data into memory
 - Sort using conventional method (e.g. quicksort)
 - Write sorted 100MB to temp file
 - Repeat until all data in sorted chunks (900/100 = 9 total)
- Read first 10 MB of each sorted chuck, merge into remaining 10MB
 - writing and reading as necessary
 - Single merge pass instead of log n
 - Additional pass helpful if data much larger than memory
- Parallelism and better hardware can improve performance
- Distribution sorts (similar to bucket sort) are also used

Last Slide on Sorting

- Simple $O(n^2)$ sorts can be fastest for small n
 - Insertion sort (latter linear for mostly-sorted)
 - Good "below a cut-off" for divide-and-conquer sorts
- O(n log n) sorts
 - Heap sort, in-place, not stable, not parallelizable
 - Merge sort, not in place but stable and works as external sort
 - Quick sort, in place, not stable and $O(n^2)$ in worst-case
 - Often fastest, but depends on costs of comparisons/copies
- Ω (*n* log *n*) is worst-case and average lower-bound for sorting by comparisons
- Non-comparison sorts
 - Bucket sort good for small number of possible key values
 - Radix sort uses fewer buckets and more phases
- Best way to sort?