CSE 373: Data Structures and Algorithms
Lecture 20: More Sorting

Instructor: Lilian de Greef
Quarter: Summer 2017



Today: More sorting algorithms!

* Merge sort analysis
* Quicksort

* Bucket sort

e Radix sort



Divide and conquer

Very important technique in algorithm design
1. Divide problem into smaller parts

2. Independently solve the simpler parts
Think recursion
Or parallelism

3. Combine solution of parts to produce overall solution

Two great sorting methods are fundamentally divide-and-conquer
(Merge Sort & Quicksort)




Merge Sort

Merge Sort: repeatedly...
* Sort the left half of the elements
* Sort the right half of the elements
* Merge the two sorted halves into a sorted whole

To sort array from position 1o to position hi:
* If range is 1 element long, it is already sorted!

* Else:
e Sortfrom loto (hi+lo) /2
e Sortfrom (hi+lo)/2tohi
* Merge the two halves together



Linked lists and big data

We defined sorting over an array, but sometimes you want to sort linked lists

One approach: ( \
* Convert to ar ay Z/\—/ D( 1/7 % O N XMS\/\
* Sort:
* Convert back to I|st O — |
Merge sort works very nlcer on linked lists directly
* Heapsort and quicksort do not

* Insertion sort and selection sort do but they’re slower

Merge sort is also the sort of choice for external sorting
* Linear merges minimize disk accesses
* And can leverage multiple disks to get streaming accesses



Analysis

Having defined an algorithm and argued it is correct, we should analyze
its running time and space:

Base (4% ot elewn S
To sort n elements, we: 5’
e Return immediately if n=1 &
* Else do 2 subproblems of size V\/Z_ and thenan () (V\) merge

/

Recurrence relation:

T() = ¢, 4/1/@(1,\[/0 =
TCn) = Con ZT(V\/> 2 >

—_—



Analysis intuitively

This recurrence is common, you just “know” it’s O(n 1og n)

Merge sort is relatively easy to intuit (best, worst, and average):
* The recursion “tree” will have height
* At each level we do a total amount of merglng equal to

Divide — I
s 829 4 5316
ivide / \ / .
Svid 8 2 9 4 53 16
ivide
a Y N .\
1Element 8 2 S 4 5 3 1 6



Analysis more formally

(One of the recurrence classics)

For simplicity, ignore constants (let constants be )
T(1)=1
T(n) = 2T(n/2) + n

=2(2T(n/4) + n/2) + n

=4T(n/4) + 2n

=4(2T(n/8) + n/4) + 2n

= 8T(n/8) + 3n

= 2kT(n/2%) + kn

We will continue to recurse until we reach the base case, i.e. T(1) for T(1), n/2k=1,i.e., logn=k

So the total amount of work is  2¥T(n/2X) + kn =2°8"T(1) +nlogn=n+nlogn=0(nlogn)



Divide-and-Conquer Sorting

Two great sorting methods are fundamentally divide-and-conquer

1. Merge Sort:

* Sort the left half of the elements (recursively)
* Sort the right half of the elements (recursively)
* Merge the two sorted halves into a sorted whole

2. Quicksort:

Pick a “pivot” element

Divide elements into “less-than pivot” and “greater-than pivot”

Sort the two divisions (recursively on each)

Answer is “sorted-less-than”, followed by “pivot”, followed by “"sorted-greater-than”



Quicksort Overview

1. Pick a pivot element

2. Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot £

3. Recursively sort Aand C

4. The final answer is A-B-C



Real-world example demo time!



Think in Terms of Sets

S 81

31 57
92 0
s

S‘ '
Sy

Ginmwars ® Caaad
N~ —

— o— @

0 13 26 31 43 57 65 75 81 92

L
L

wn
IIH

(V)




Example, Showing Recursion

8121914 |53 |1]6

Divide — 5 E——
o 24 3 1 - 8
Divide A/3 ~ -
i S
Divide
\
1
!/
Conquer 1
Conquer ' \
P h 3 4 6 8
ConCIuer\’ 'L —

1 23456809




Details

Have not yet explained:

* How to pick the pivot element
* Any choice is correct: data will end up sorted
* But as analysis will show, want the two partitions to be about aﬁ‘u a

| swze

* How to implement partitioning
* In linear time
* In place



Pivots

* Best pivot?
. \/\/\QAE AV

* Halve each time

- o nkea )

* Worst pivot?
* Greatest/least element
* Partition of sizen-1

o n")

8 3116
T
24 3 1 2 8 9 6
8 3116
1\>
a 8294536




Potential pivot rules

While sorting arr from 1lotohi-1 ..

* Pickarr[lo] orarr[hi-1]
* Fast, but worst-case occurs with mostly sorted input

* Pick random element in the range

* Does as well as any technique, but (pseudo)random number generation can be slow
* Still probably the most elegant approach

e Medianof 3,e.g.,arr[lo], arr[hi-1], arr[ (hi+lo) /2]
« Common heuristic that tends to workwell —_—




Partitioning

Conceptually simple, but hardest part to code up correctly
 After picking pivot, need to partition in linear time in place

One approach (there are slightly fancier ones):
1. Swap pivot witharr[1lo]
2. Usetwo fingers i and j, startingat 1o+1 and hi-1
3. while (i < j)
if (arr[j] > pivot) J--
else if (arr[i] < pivot) i++
else swap arr[i] with arr([j]

4. Swap pivot witharr[i] *

*skip step 4 if pivot ends up being least element



Example

* Step one: pick pivot as median of 3
* 1o=0,hi=10

0 1 2 3 4 5 6 7 8 9

8| 1(4|9|10[3|5(2]7]|6
e Step two: move pivot to the 1o position

0 1 2 3 4 5 6 7 8 9

61|14 9|0|3|5|2|7|8




Often have more than
one swap during partition —

Exa M p | e this is a short example

61149035278

/ /

Now partition in place

Move fingers / /

Swap /« /

Move fingers 6|1]4]|2|0|3|5|9]|7]8

Move pivot 5/114|(2|0|3|6]9|7]|8




7 4
i n > 2
Analysis = -
J/ N
* Best-case: Pivot is always the median —_ D — ™
DESLTLd>
T(0)=T(1)=1

T(n)= 2T ("‘/7,3 —~+ V- linear-time partition
Same recurrence as merge sort: (™ CW/\ ﬁ/ﬂg ),\>

* Worst-case: Pivot is always smallest or largest element
T(0)=T(1)=1

TM=1T(n-1)* N ( L>
N

Basically same recurrence as selection sort: ()

* Average-case (e.g., with random pivot)
* O(n 1og n), not responsible for proof (in text)



Cutoffs

* For small n, all that recursion tends to cost more than doing a quadratic

sort ( u\
* Remember asymptotic complexity is for (QA( k/ AN N (\/\ —
« Common engineering technique: switch algorithm below a
e Reasonable rule of thumb: use insertion sort forn< 10 —
 —
* Notes:

e Could also use a cutoff for merge sort

e Cutoffs are also the norm with parallel algorithms
« Switch to sequential algorithm

* None of this affects asymptotic complexity



Cutoff pseudocode

void quicksort(int[] arr, int lo, int hi) //\\ /&\
{
(hi - lo < CUTOFF)
insertionSort (arr,lo,hi);

Notice how this cuts out the vast majority of the recursive calls
— Think of the recursive calls to quicksort as a tree
— Trims out the bottom layers of the tree



Practice with comparison sort!

A comparison sorting algorithm is operating on an array of 8 integers.
After its 4% loop or recursive call, the array looks like:

4 8 11 | 15 | 42 | 29 | 18 | 37

Which of these sorting algorithms can it be?
A) Heapsort
B) Merge sort

C) Insertion sort U\f(vd

D) Quicksort using Median of 3 =~ "~



Practice with comparison sort!

A comparison sorting algorithm is operating on an array of 8 integers.
After its 4% loop or recursive call, the array looks like:

4 8 11 | 15 | 42 | 29 | 18 | 37

—— T
Which of these sorting algorlthms can |Zbe? Mo \
A) Heapsort —__ wret \)\V*f e JQ

B) Merge sort

< C) Insertion sort_> kil
D) Quicksort using Median of3<=fAEL‘°“3 AL \ X] A[‘A )

l—\f 11 (




How Fast Can We Sort?

* Heapsort & mergesort have O(n 1o0g n) worst-case running time
e Quicksort has O(n 1og n) average-case running time

* These bounds are all tight, actually ®(n 1ogn uWJ ¢
g y ©(n 1og n) wa Lé

&

* An amazing computer-science result: proves all the clever programming in the

world cannot comparison-sort in linear time ><
OX*)



The Big Picture

Surprising amount of juicy computer science: 2-3 lectures...

Simple
algorithms:
O(n?)

Insertion sort
Selection sort

Fancier Comparison Specialized Handling
algorithms: lower bound: S huge data
O(n log n) Q(n log n) sets
Heap sort Bucket sort External
Merge sort Radix sort sorting
Quick sort (avg)

How???
* Change the model —assume
more than “compare(a,b)”



Bucket Sort (a.k.a. BinSort)

* If all values to be sorted are known to be integers between 1 and K (or any small

range):

< —

* Create an array of size K
* Put each element in its proper

 If data is only integers, no need to store more than a count of how times that bucket has

een used

e Output result via linear pass through array of buckets

count array

1 |||

|

2
3|l
4

/]

s 1

e Example: N
K=5

input (5,1, 3,4, 3, 2/ 1 15 4,51
output | 1 1,2, %% G4 <SS



Analyzing Bucket Sort

!
_ WAl V™
M/Af( /2\1(00 L\A’L“(S
* Overall: O(n+K) = &

* Linear in n, but also linear in K
* (Q(n 1og n) lower bound does not apply because this is &ta;omparison sort

* Good when Kis smaller (or not much larger) than n
* We don’t spend time doing comparisons of duplicates

* Bad when K is much larger than n
* Wasted space; wasted time during linear O(K) pass

* For data in addition to integer keys, use list at each bucket



Bucket Sort with Data

* Most real lists aren’t just keys; we have data

* Each bucket is a list (say, linked list)
* To add to a bucket, insert in O(1) (at beginning, or keep pointer to last element)

Example: spice level; scale 1-5; count array
1 =mild, 5 = very spicy ) «—DB&(\
Input=
5: Habanero 2
~ r~

3: Jalapefio 3 (%34\0\ PQV\ V]

5: Ghost pepper A

1: Bell pepper \

5 —T HO\LOQ\/\JL\(O — él TJ(

* Result: ’(Sg(( ; 34&0\@1{7\03 L’LQ&)QM}/\_” C \o f/\'

* Easy to keep ‘stable’; Habanero still before Ghost pepper



Interactive Visualizations

Comparison Sort (including quicksort):
* http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

Bucket Sort:

e http://www.cs.usfca.edu/~galles/visualization/BucketSort.html
e http://www.cs.usfca.edu/~galles/visualization/CountingSort.html

Radix Sort:
e http://www.cs.usfca.edu/~galles/visualization/RadixSort.html




