CSE 373: Data Structures and Algorithms Lecture 20: More Sorting

Instructor: Lilian de Greef
Quarter: Summer 2017

Today: More sorting algorithms!

- Merge sort analysis
- Quicksort
- Bucket sort
- Radix sort

Divide and conquer

Very important technique in algorithm design

1. Divide problem into smaller parts
2. Independently solve the simpler parts

- Think recursion
- Or parallelism

3. Combine solution of parts to produce overall solution

Two great sorting methods are fundamentally divide-and-conquer (Merge Sort \& Quicksort)

Merge Sort

Merge Sort: repeatedly...

- Sort the left half of the elements
- Sort the right half of the elements
- Merge the two sorted halves into a sorted whole

To sort array from position lo to position hi:

- If range is 1 element long, it is already sorted!
- Else:
- Sort from lo to (hi+lo)/2
- Sort from (hi+lo)/2 to hi
- Merge the two halves together

Linked lists and big data

We defined sorting over an array, but sometimes you want to sort linked lists
One approach:

- Convert to array:
- Sort:
- Convert back to list: $O(n)$

Merge sort works very nicely on linked lists directly

- Heapsort and quicksort do not
- Insertion sort and selection sort do but they're slower

Merge sort is also the sort of choice for external sorting

- Linear merges minimize disk accesses
- And can leverage multiple disks to get streaming accesses

Analysis

Having defined an algorithm and argued it is correct, we should analyze its running time and space:

To sort n elements, we:

- Return immediately if $n=1$
- Else do 2 subproblems of size \qquad $r / 2$ and then an \qquad merge

Recurrence relation:

$$
\begin{aligned}
& T(1)=c_{1} \\
& T(n)=c_{2} n+2+(n / 2)
\end{aligned}
$$

Analysis intuitively

This recurrence is common, you just "know" it's $O(n \log n)$

Merge sort is relatively easy to intuit (best, worst, and average):

- The recursion "tree" will have height logh
- At each level we do a total amount of merging equal to n

Analysis more formally

(One of the recurrence classics)
For simplicity, ignore constants (let constants be)

$$
\begin{aligned}
T(1) & =1 \\
T(n) & =2 T(n / 2)+n \\
& =2(2 T(n / 4)+n / 2)+n \\
& =4 T(n / 4)+2 n \\
& =4(2 T(n / 8)+n / 4)+2 n \\
& =8 T(n / 8)+3 n \\
& \ldots \\
& =2^{k} T\left(n / 2^{k}\right)+k n
\end{aligned}
$$

We will continue to recurse until we reach the base case, i.e. $T(1)$ for $T(1), n / 2^{k}=1$, i.e., $\log n=k$
So the total amount of work is

$$
2^{k} T\left(n / 2^{k}\right)+k n=2^{\log n} T(1)+n \log n=n+n \log n=O(n \log n)
$$

Divide-and-Conquer Sorting

Two great sorting methods are fundamentally divide-and-conquer

1. Merge Sort:

- Sort the left half of the elements (recursively)
- Sort the right half of the elements (recursively)
- Merge the two sorted halves into a sorted whole

2. Quicksort:

- Pick a "pivot" element
- Divide elements into "less-than pivot" and "greater-than pivot"
- Sort the two divisions (recursively on each)
- Answer is "sorted-less-than", followed by "pivot", followed by "sorted-greater-than"

Quicksort Overview

1. Pick a pivot element
2. Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot \leftarrow
3. Recursively sort A and C
4. The final answer is $A-B-C$

Real-world example demo time!

Think in Terms of Sets

$$
\begin{array}{lllllllllll|}
\hline & 0 & 13 & 26 & 31 & 43 & 57 & 65 & 75 & 81 & 92 \\
\hline
\end{array}
$$

Presto! S is sorted
[Weiss]

Example, Showing Recursion

Details

Have not yet explained:

- How to pick the pivot element
- Any choice is correct: data will end up sorted
- But as analysis will show, want the two partitions to be about equal size
- How to implement partitioning
- In linear time
- In place

Pivots

- Best pivot?
- median
- Halve each time
- o(nlog$n)$
- Worst pivot?
- Greatest/least element
- Partition of size n-1
- $O\left(n^{2}\right)$

2431

Potential pivot rules

While sorting arr from lo to hi-1 ...

- Pick arr [lo] or arr[hi-1]
- Fast, but worst-case occurs with mostly sorted input
- Pick random element in the range
- Does as well as any technique, but (pseudo)random number generation can be slow
- Still probably the most elegant approach
- Median of 3, e.g., arr[lo], arr[hi-1], $\operatorname{arr}[(h i+10) / 2]$
- Common heuristic that tends to work well

Partitioning

Conceptually simple, but hardest part to code up correctly

- After picking pivot, need to partition in linear time in place

One approach (there are slightly fancier ones):

1. Swap pivot with arr [lo]
2. Use two fingers i and j, starting at $10+1$ and hi-1
3. while (i < j)
if (arr[j] > pivot) j--
else if (arr[i] < pivot) i++
else swap arr[i] with arr[j]
4. Swap pivot with arr [i] *
*skip step 4 if pivot ends up being least element

Example

- Step one: pick pivot as median of 3
- lo = 0, hi = 10

0	1	2	3	4	5	6	7	8	9
8	1	4	9	0	3	5	2	7	6

- Step two: move pivot to the lo position

Example

Now partition in place

Move fingers

Swap

Move fingers

Move pivot

5	1	4	2	0	3	6	9	7	8

Analysis

- Best-case: Pivot is always the median

$$
\begin{aligned}
& \mathrm{T}(0)=\mathrm{T}(1)=1 \\
& \mathrm{~T}(n)=2 T(n / 2)+h \text {-- linear-time partition } \\
& \text { Same recurrence as merge sort: } O(n \log n)
\end{aligned}
$$

- Worst-case: Pivot is always smallest or largest element

$$
\begin{aligned}
& T(0)=T(1)=1 \\
& T(n)=1 T(n-1)+n
\end{aligned}
$$

Basically same recurrence as selection sort: $O\left(n^{2}\right)$

- Average-case (e.g., with random pivot)
- $\mathrm{O}(n \log n)$, not responsible for proof (in text)

Cutoffs

- For small n, all that recursion tends to cost more than doing a quadratic sort
- Remember asymptotic complexity is for really large

- Common engineering technique: switch algorithm below a cutoff
- Reasonable rule of thumb: use insertion sort for $n<10$
- Notes:
- Could also use a cutoff for merge sort
- Cutoffs are also the norm with parallel algorithms
- Switch to sequential algorithm
- None of this affects asymptotic complexity

Cutoff pseudocode

```
void quicksort(int[] arr, int lo, int hi)
{
    if(hi - lo < CUTOFF)
            insertionSort(arr,lo,hi);
    else
}
```


Notice how this cuts out the vast majority of the recursive calls

- Think of the recursive calls to quicksort as a tree
- Trims out the bottom layers of the tree

Practice with comparison sort!

A comparison sorting algorithm is operating on an array of 8 integers. After its $4^{\text {th }}$ loop or recursive call, the array looks like:

4	8	11	15	42	29	18	37

Which of these sorting algorithms can it be?
A) Heapsort
B) Merge sort
C) Insertion sort
D) Quicksort using Median of 3

Practice with comparison sort!

A comparison sorting algorithm is operating on an array of 8 integers. After its $4^{\text {th }}$ loop or recursive call, the array looks like:

Which of these sorting algorithms can it be?,
A) Heapsort \qquad maxtlemp

B) Merge sort
C) Insertion sort
D) Quicksort using Median of 3 $\longleftarrow A[b w]$, $A[$ high -1 $], A\left[\frac{\text { outhit }}{2}\right]$

How Fast Can We Sort?

- Heapsort \& mergesort have $O(n \log n)$ worst-case running time
- Quicksort has $O(n \log n)$ average-case running time
- These bounds are all tight, actually $\Theta(n \log n)$

- An amazing computer-science result: proves all the clever programming in the world cannot comparison-sort in linear time

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures...

- Change the model - assume more than "compare(a,b)"

Bucket Sort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range):
- Create an array of size K
- Put each element in its proper bucket (a.k.a. bin)
- If data is only integers, no need to store more than a count of how times that bucket has been used
- Output result via linear pass through array of buckets

- Example:
$K=5$
input $(5,1,3,3,4,3,2,1,1,7,5,4,5)$
output $1,1,1,2,3,3,4,4,5,5,5$

Analyzing Bucket Sort

- Overall: $O(n+K)$

- Linear in n, but also linear in K
- $\Omega(n \log n)$ lower bound does not apply because this is not a comparison sort
- Good when K is smaller (or not much larger) than n
- We don't spend time doing comparisons of duplicates
- Bad when K is much larger than n
- Wasted space; wasted time during linear $O(K)$ pass
- For data in addition to integer keys, use list at each bucket

Bucket Sort with Data

- Most real lists aren't just keys; we have data
- Each bucket is a list (say, linked list)
- To add to a bucket, insert in O(1) (at beginning, or keep pointer to last element)

Example: spice level; scale 1-5;
1 = mild, 5 = very spicy
Input=
5: Habanero
3: Jalapeño
5: Ghost pepper
1: Bell pepper

- Result: Bell, Jalapeno, Habaners, Ghost
- Easy to keep 'stable'; Habanero still before Ghost pepper

Interactive Visualizations

Comparison Sort (including quicksort):

- http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

Bucket Sort:

- http://www.cs.usfca.edu/~galles/visualization/BucketSort.html
- http://www.cs.usfca.edu/~galles/visualization/CountingSort.html

Radix Sort:

- http://www.cs.usfca.edu/~galles/visualization/RadixSort.html

