
Instructor:	Lilian	de	Greef
Quarter:	Summer	2017

CSE	373:	Data	Structures	and	Algorithms
Lecture	20:	More	Sorting

Today:	More	sorting	algorithms!

• Merge	sort	analysis
• Quicksort
• Bucket	sort
• Radix	sort

Divide	and	conquer

Very	important	technique	in	algorithm	design

1. Divide	problem	into	smaller	parts

2. Independently	solve	the	simpler	parts	
• Think	recursion
• Or	parallelism

3. Combine	solution	of	parts	to	produce	overall	solution

Two	great	sorting	methods	are	fundamentally	divide-and-conquer
(Merge	Sort	&	Quicksort)

Merge	Sort

Merge	Sort:	repeatedly…
• Sort	the	left	half	of	the	elements
• Sort	the	right	half	of	the	elements
• Merge	the	two	sorted	halves	into	a	sorted	whole

To	sort	array	from	position	lo to	position	hi:
• If	range	is	1	element	long,	it	is	already	sorted!
• Else:	

• Sort	from	lo to	(hi+lo)/2
• Sort	from	(hi+lo)/2 to	hi
• Merge	the	two	halves	together

Linked	lists	and	big	data

We	defined	sorting	over	an	array,	but	sometimes	you	want	to	sort	linked	lists

One	approach:
• Convert	to	array:
• Sort:	
• Convert	back	to	list:

Merge	sort	works	very	nicely	on	linked	lists	directly
• Heapsort and	quicksort	do	not
• Insertion	sort	and	selection	sort	do	but	they’re	slower

Merge	sort	is	also	the	sort	of	choice	for	external	sorting
• Linear	merges	minimize	disk	accesses
• And	can	leverage	multiple	disks	to	get	streaming	accesses

Analysis

Having	defined	an	algorithm	and	argued	it	is	correct,	we	should	analyze	
its	running	time	and	space:

To	sort	n elements,	we:
• Return	immediately	if	n=1
• Else	do	2	subproblems of	size	 and	then	an	 merge

Recurrence	relation:

Analysis	intuitively
This	recurrence	is	common,	you	just	“know”	it’s	O(n log n)

Merge	sort	is	relatively	easy	to	intuit	(best,	worst,	and	average):
• The	recursion	“tree”	will	have	height
• At	each	level	we	do	a	total amount	of	merging	equal	to	

Analysis	more	formally	
(One	of	the	recurrence	classics)

For	simplicity,	ignore	constants	(let	constants	be)
T(1)	=	1																																												
T(n)	=	2T(n/2)	+	n

=	2(2T(n/4)	+	n/2)	+	n	
=	4T(n/4)	+	2n	
=	4(2T(n/8)	+	n/4)	+	2n	
=	8T(n/8)	+	3n
….
=	2kT(n/2k)	+	kn

We	will	continue	to	recurse until	we	reach	the	base	case,	i.e.	T(1)	for	T(1),		n/2k	=	1,	i.e.,	log	n	=	k	

So	the	total	amount	of	work	is						2kT(n/2k)	+	kn =	2log	n	T(1)	+	n	log	n	=	n	+	n	log	n	=	O(n	log	n)

Divide-and-Conquer	Sorting

Two	great	sorting	methods	are	fundamentally	divide-and-conquer

1. Merge	Sort:	
• Sort	the	left	half	of	the	elements	(recursively)	
• Sort	the	right	half	of	the	elements	(recursively)
• Merge	the	two	sorted	halves	into	a	sorted	whole

2. Quicksort:			
• Pick	a	“pivot”	element	
• Divide	elements	into	“less-than	pivot”	and	“greater-than	pivot”
• Sort	the	two	divisions	(recursively	on	each)
• Answer	is	“sorted-less-than”,	followed	by	“pivot”,	followed	by	”sorted-greater-than”

Quicksort	Overview

1. Pick	a	pivot	element

2. Partition	all	the	data	into:
A. The	elements	less	than	the	pivot
B. The	pivot
C. The	elements	greater	than	the	pivot

3. Recursively	sort	A	and	C

4. The	final	answer	is	A-B-C

Real-world	example	demo	time!

Think	in	Terms	of	Sets

13
81

92
43

65

31 57

26

75
0

S select	pivot	value

13 8192
43 6531

5726

750S1 S2 partition	S

13 4331 57260

S1
81 927565

S2
Quicksort(S1)	and
Quicksort(S2)

13 4331 57260 65 81 9275S Presto!		S is	sorted

[Weiss]

Example,	Showing	Recursion

2 4 3 1 8 9 6

2 1 94 6

2

1 2

1 2 3 4

1 2 3 4 5 6 8 9

Conquer

Conquer

Conquer

Divide

Divide

Divide

1 Element

8 2 9 4 5 3 1 6

5

83

1

6 8 9

Details

Have	not	yet	explained:

• How	to	pick	the	pivot	element
• Any	choice	is	correct:	data	will	end	up	sorted
• But	as	analysis	will	show,	want	the	two	partitions	to	be	about

• How	to	implement	partitioning
• In	linear	time
• In	place

Pivots

• Best	pivot?

• Halve	each	time

• Worst	pivot?
• Greatest/least	element
• Partition	of	size	n	- 1

2		4			3			1 8			9			6

8 2 9 4 5 3 1 6

5

8		2		9		4		5		3		6

8 2 9 4 5 3 1 6

1

Potential	pivot	rules

While	sorting	arr from	lo to	hi-1 …

• Pick	arr[lo] or	arr[hi-1]
• Fast,	but	worst-case	occurs	with	mostly	sorted	input

• Pick	random	element	in	the	range
• Does	as	well	as	any	technique,	but	(pseudo)random	number	generation	can	be	slow
• Still	probably	the	most	elegant	approach

• Median	of	3,	e.g.,	arr[lo], arr[hi-1], arr[(hi+lo)/2]
• Common	heuristic	that	tends	to	work	well

Partitioning
Conceptually	simple,	but	hardest	part	to	code	up	correctly

• After	picking	pivot,	need	to	partition	in	linear	time	in	place

One	approach	(there	are	slightly	fancier	ones):
1. Swap	pivot	with	arr[lo]
2. Use	two	fingers	i and	j,	starting	at	lo+1 and	hi-1
3. while (i < j)

if (arr[j] > pivot) j--

else if (arr[i] < pivot) i++

else swap arr[i] with arr[j]

4. Swap	pivot	with	arr[i] *

*skip	step	4	if	pivot	ends	up	being	least	element

Example

• Step	one:	pick	pivot	as	median	of	3
• lo =	0,	hi =	10

6 1 4 9 0 3 5 2 7 8
0 1 2 3 4 5 6 7 8 9

• Step	two:	move	pivot	to	the	lo position

8 1 4 9 0 3 5 2 7 6
0 1 2 3 4 5 6 7 8 9

Example

Now	partition	in	place

Move	fingers

Swap

Move	fingers

Move	pivot

6 1 4 9 0 3 5 2 7 8

6 1 4 9 0 3 5 2 7 8

6 1 4 2 0 3 5 9 7 8

6 1 4 2 0 3 5 9 7 8

Often	have	more	than	
one	swap	during	partition	–
this	is	a	short	example

5 1 4 2 0 3 6 9 7 8

Analysis
• Best-case:	Pivot	is	always	the	median

T(0)	=	T(1)	=	1
T(n)	=	 -- linear-time	partition
Same	recurrence	as	merge	sort:

• Worst-case:	Pivot	is	always	smallest	or	largest	element
T(0)	=	T(1)	=	1
T(n)	=
Basically	same	recurrence	as	selection	sort:

• Average-case	(e.g.,	with	random	pivot)
• O(n log n),	not	responsible	for	proof	(in	text)

Cutoffs

• For	small	n,	all	that	recursion	tends	to	cost	more	than	doing	a	quadratic	
sort
• Remember	asymptotic	complexity	is	for

• Common	engineering	technique:	switch	algorithm	below	a	cutoff
• Reasonable	rule	of	thumb:	use	insertion	sort	for	n <	10

• Notes:
• Could	also	use	a	cutoff	for	merge	sort
• Cutoffs	are	also	the	norm	with	parallel	algorithms	

• Switch	to	sequential	algorithm
• None	of	this	affects	asymptotic	complexity

Cutoff	pseudocode
void quicksort(int[] arr, int lo, int hi)
{
if(hi – lo < CUTOFF)

insertionSort(arr,lo,hi);
else

…
}

Notice	how	this	cuts	out	the	vast	majority	of	the	recursive	calls	
– Think	of	the	recursive	calls	to	quicksort as	a	tree
– Trims	out	the	bottom	layers	of	the	tree

Practice	with	comparison	sort!
A	comparison	sorting	algorithm	is	operating	on	an	array	of	8	integers.	
After	its	4th loop	or	recursive	call,	the	array	looks	like:

Which	of	these	sorting	algorithms	can	it	be?
A) Heapsort
B) Merge	sort
C) Insertion	sort
D) Quicksort	using	Median	of	3

4 8 11 15 42 29 18 37

Practice	with	comparison	sort!
A	comparison	sorting	algorithm	is	operating	on	an	array	of	8	integers.	
After	its	4th loop	or	recursive	call,	the	array	looks	like:

Which	of	these	sorting	algorithms	can	it	be?
A) Heapsort
B) Merge	sort
C) Insertion	sort
D) Quicksort	using	Median	of	3

4 8 11 15 42 29 18 37

How	Fast	Can	We	Sort?

• Heapsort &	mergesort have	O(n log n)	worst-case	running	time

• Quicksort	has	O(n log n)	average-case	running	time

• These	bounds	are	all	tight,	actually	Q(n log n)

• Comparison	sorting	in	general	is	W (n log n)
• An	amazing	computer-science	result:	proves	all	the	clever	programming	in	the	
world	cannot	comparison-sort	in	linear	time

The	Big	Picture

Surprising	amount	of	juicy	computer	science:	2-3	lectures…
Simple

algorithms:
O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
W(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort (avg)
…

Bucket sort
Radix sort

External
sorting

How???
• Change	the	model	– assume				
more	than	“compare(a,b)”

Bucket	Sort	(a.k.a.	BinSort)
• If	all	values	to	be	sorted	are	known to	be	integers	between	1	and	K	(or	any	small	
range):
• Create	an	array	of	size	K
• Put	each	element	in	its	proper	bucket	(a.k.a.	bin)
• If data	is	only	integers,	no	need	to	store	more	than	a	count of	how	times	that	bucket	has	
been	used

• Output	result	via	linear	pass	through	array	of	buckets
count array

1

2

3

4

5

• Example:	
K=5
input	(5,	1,	3,	4,	3,	2,	1,	1,	5,	4,	5)

output	

Analyzing	Bucket	Sort

• Overall:	O(n+K)
• Linear	in	n,	but	also	linear	in	K
• W(n log n)	lower	bound	does	not	apply	because	this	is	not	a	comparison	sort

• Good	when	K is	smaller	(or	not	much	larger)	than	n
• We	don’t	spend	time	doing	comparisons	of	duplicates

• Bad	when	K is	much	larger	than	n
• Wasted	space;	wasted	time	during	linear	O(K)	pass

• For	data	in	addition	to	integer	keys,	use	list	at	each	bucket

Bucket	Sort	with	Data
• Most	real	lists	aren’t	just	keys;	we	have	data
• Each	bucket	is	a	list	(say,	linked	list)
• To	add	to	a	bucket,	insert	in	O(1)	(at	beginning,	or	keep	pointer	to	last	element)

• Result:
• Easy	to	keep	‘stable’;	Habanero	still	before	Ghost	pepper

count	array

1

2

3

4

5

Example:	spice	level;	scale	1-5;
1	=	mild,		5	=	very spicy

Input=
5:	Habanero
3:	Jalapeño
5:	Ghost	pepper
1:	Bell	pepper

Interactive	Visualizations

Comparison	Sort	(including	quicksort):
• http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

Bucket	Sort:
• http://www.cs.usfca.edu/~galles/visualization/BucketSort.html
• http://www.cs.usfca.edu/~galles/visualization/CountingSort.html

Radix	Sort:
• http://www.cs.usfca.edu/~galles/visualization/RadixSort.html

