
Instructor:	Lilian	de	Greef
Quarter:	Summer	2017

CSE	373:	Data	Structures	and	Algorithms
Lecture	19:	Comparison	Sorting	Algorithms



Today

• Intro	to	sorting
• Comparison	sorting
• Insertion	Sort
• Selection	Sort
• Heap	Sort
• Merge	Sort



Sorting
Now	looking	at	algorithms	instead	of	data	structures!



Introduction	to	Sorting

• Stacks,	queues,	priority	queues,	and	dictionaries	all	focused	on	providing	
one	element	at	a	time

• But	often	we	know	we	want	“all	the	things”	in	some	order
• Humans	can	sort,	but	computers	can	sort	fast
• Very	common	to	need	data	sorted	somehow

• Alphabetical	list	of	people
• List	of	countries	ordered	by	population
• Search	engine	results	by	relevance
• List	store	catalogue	by	price
• …

• Algorithms	have	different	asymptotic	and	constant-factor	trade-offs
• No	single	“best”	sort	for	all	scenarios
• Knowing	one	way	to	sort	just	isn’t	enough



More	Reasons	to	Sort

General	technique	in	computing:	
Preprocess	data	to	make	subsequent	operations	faster

Example:	Sort	the	data	so	that	you	can
• Find	the	kth largest	in	constant	time	for	any	k
• Perform	binary	search	to	find	elements	in	logarithmic	time

Whether	the	performance	of	the	preprocessing	matters	depends	on
• How	often	the	data	will	change	(and	how	much	it	will	change)
• How	much	data	there	is



The	main	problem,	stated	carefully

For	now,	assume	we	have	n comparable	elements	in	an	array	and	we	want	to	rearrange	
them	to	be	in	increasing	order

Input:
• An	array	A of	data	records
• A	key	value	in	each	data	record
• A	comparison	function	

Effect:
• Reorganize	the	elements	of	A such	that	for	any	i and	j,	 if	i < j then
• (Also,	Amust	have	exactly	the	same	data	it	started	with)
• Could	also	sort	in	reverse	order,	of	course

An	algorithm	doing	this	is	a	comparison	sort



Variations	on	the	Basic	Problem

1. Maybe	elements	are	in	a	linked	list	(could	convert	to	array	and		back	in	linear	
time,	but	some	algorithms	needn’t	do	so)

2. Maybe	ties	need	to	be	resolved	by	“original	array	position”
• Sorts	that	do	this	naturally	are	called

3. Maybe	we	must	not	use	more	than	O(1)	“auxiliary	space”
• Sorts	meeting	this	requirement	are	called

4. Maybe	we	can	do	more	with	elements	than	just	compare
• Sometimes	leads	to	faster	algorithms

5. Maybe	we	have	too	much	data	to	fit	in	memory
• Use	an	“ ”	algorithm



Sorting:	The	Big	Picture

Surprising	amount	of	neat	stuff	to	say	about	sorting:

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
W(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort
…

Bucket sort
Radix sort

External
sorting



(space	for	notes	from	demo)



Insertion	Sort
• Idea:	At	step	k,	put	the	kth element	in	the	correct	position	among	the	first	
k elements

• Alternate	way	of	saying	this:
• Sort	first	two	elements
• Now	insert	3rd element	in	order
• Now	insert	4th element	in	order
• …

• “Loop	invariant”:	when	loop	index	is	i,	first	i elements	are	sorted

• Time?	
Best-case		______					Worst-case		______					“Average”	case	______



Selection	sort
• Idea:	At	step	k,	find	the	smallest	element	among	the	not-yet-sorted	elements	and	
put	it	at	position	k

• Alternate	way	of	saying	this:
• Find	smallest	element,	put	it	1st
• Find	next	smallest	element,	put	it	2nd
• Find	next	smallest	element,	put	it	3rd …

• “Loop	invariant”:	when	loop	index	is	i,	first	i elements	are	the	i smallest	
elements	in	sorted	order

• Time?	
Best-case		________											Worst-case		________									“Average”	case	_______



Insertion	Sort	vs.	Selection	Sort

• Different	algorithms

• Solve	the	same	problem

• Have	the	same	worst-case	and	average-case	asymptotic	complexity
• Insertion-sort	has	better	best-case	complexity;	preferable	when	input	is	
“mostly	sorted”

• Other	algorithms	are	more	efficient	for	large arrays	that	are	not
already	almost	sorted
• Insertion	sort	may	do	well	on	small	arrays



The	Big	Picture

Surprising	amount	of	juicy	computer	science:	2-3	lectures…
Simple

algorithms:
O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
W(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort (avg)
…

Bucket sort
Radix sort

External
sorting



Heap	sort

• Sorting	with	a	heap:
• insert each	arr[i],	or	better	yet	use	buildHeap
• for(i=0; i < arr.length; i++) 

arr[i] = 

• Worst-case	running	time:

• We	have	the	array-to-sort	and	the	heap
• So	this	is	not	an	in-place	sort
• There’s	a	trick	to	make	it	in-place…



In-place	heap	sort

• Treat	the	initial	array	as	a	heap	(via	buildHeap)
• When	you	delete	the	ith element,	put	it	at	arr[n-i]

• That	array	location	isn’t	needed	for	the	heap	anymore!

4 7 5 9 8 6 10 3 2 1

sorted	partheap	part

arr[n-i]=
deleteMin()

5 7 6 9 8 10 4 3 2 1

sorted	partheap	part

But	this	reverse	sorts	–
how	would	you	fix	that?



“AVL	sort”
• We	can	also	use	a	balanced	tree	to:
• insert each	element:	total	time	O(n log n)
• Repeatedly	deleteMin:	total	time	O(n log n)

• Better:	in-order	traversal	O(n),	but	still	O(n log n)	overall

• Compared	to	heap	sort
• both	are	O(n log n)	in	worst,	best,	and	average	case
• neither	parallelizes	well
• heap	sort	is	can	be	done	in-place,	has	better	constant	factors

Design	decision:	which	would	you	choose	between	Heap	Sort	and	AVL	Sort?
Why?



“Hash	sort”???

Finding	min	item	in	a	hashtable is	O(n),	so	this	would	be	a	slower,	more	
complicated	selection	sort



Divide	and	conquer

Very	important	technique	in	algorithm	design

1. Divide	problem	into	smaller	parts

2. Independently	solve	the	simpler	parts	
• Think	recursion
• Or	parallelism

3. Combine	solution	of	parts	to	produce	overall	solution

Two	great	sorting	methods	are	fundamentally	divide-and-conquer
(Merge	Sort	&	Quicksort)



Merge	Sort

Merge	Sort:	recursively…
• Sort	the	left	half	of	the	elements
• Sort	the	right	half	of	the	elements
• Merge	the	two	sorted	halves	into	a	sorted	whole



(space	for	notes	from	demo)



Merge	sort

• To	sort	array	from	position	lo to	position	hi:
• If	range	is	1	element	long,	it	is	already	sorted!
• Else:	

• Sort	from	lo to	(hi+lo)/2
• Sort	from	(hi+lo)/2 to	hi
• Merge	the	two	halves	together

• Merging	takes	two	sorted	parts	and	sorts	everything
• O(n)	but	requires	auxiliary	space…

8 2 9 4 5 3 1 6



Merge	Sort:	Example	focused	on	merging

Start	with:	 8 2 9 4 5 3 1 6

After	recursion:
(not	magic	J)

Merge:	
Use	3	“fingers”
and	1	more	array

2 4 8 9 1 3 5 6

(After	merge,	
copy	back	to	
original	array)

Main	array

Auxiliary	array

Main	array

Main	array



Merge	Sort:	Example	showing	recursion

8		2			9			4 5			3			1			6

8			2 1			69			4 5			3

8 2

2			8

2			4			8			9

1			2			3			4			5			6			8			9

Merge

Merge

Merge

Divide

Divide

Divide

1	Element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

4				9 3			5 1			6

1			3			5			6



One	way	to	practice	on	your	own	time:

• Make	yourself	an	unsorted	array
• Try	using	one	of	the	sorting	algorithms	on	it
• You	know	you	got	the	right	end	result	if	it	comes	out	sorted
• Can	use	the	same	example	for	merge	sort	as	the	previous	slide	to	
double	check	in-between	steps



Some	details:	saving	a	little	time

• What	if	the	final	steps	of	our	merge	looked	like	this:

• Wasteful	to	copy	to	the	auxiliary	array	just	to	copy	back…

2 4 5 6 1 3 8 9

1 2 3 4 5 6

Main	array

Auxiliary	array



Some	details:	saving	a	little	time
• If	left-side	finishes	first,	just	stop	the	merge	and	copy	back:

• If	right-side	finishes	first,	copy	dregs	into	right	then	copy	back

Main	array

Auxiliary	array

Main	array

Auxiliary	array



Some	details:	saving	space	and	copying
Simplest	/	Worst:	
Use	a	new	auxiliary	array	of	size	(hi-lo) for	every	merge

Better:
Use	a	new	auxiliary	array	of	size	n for	every	merging	stage

Better:
Reuse	same	auxiliary	array	of	size	n for	every	merging	stage

Best	(but	a	little	tricky):
Don’t	copy	back	– at	2nd,	4th,	6th,	…	merging	stages,	use	the	original	array	as	the	auxiliary	array	and	
vice-versa
• Need	one	copy	at	end	if	number	of	stages	is	odd



Swapping	Original	/	Auxiliary	Array	(“best”)

(Arguably	easier	to	code	up	without	recursion	at	all)

Merge	by	1

Merge	by	2

Merge	by	4

Merge	by	8

Merge	by	16

Copy	if	Needed

• First	recurse down	to	lists	of	size	1
• As	we	return	from	the	recursion,	swap	between	arrays

Auxiliary	array

Main	array

Auxiliary	array

Main	array

Auxiliary	array

Main	array

Main	array



Linked	lists	and	big	data

We	defined	sorting	over	an	array,	but	sometimes	you	want	to	sort	linked	lists

One	approach:
• Convert	to	array:
• Sort:	
• Convert	back	to	list:

Merge	sort	works	very	nicely	on	linked	lists	directly
• Heapsort and	quicksort	do	not
• Insertion	sort	and	selection	sort	do	but	they’re	slower

Merge	sort	is	also	the	sort	of	choice	for	external	sorting
• Linear	merges	minimize	disk	accesses
• And	can	leverage	multiple	disks	to	get	streaming	accesses



Analysis

Having	defined	an	algorithm	and	argued	it	is	correct,	we	should	analyze	
its	running	time	and	space:

To	sort	n elements,	we:
• Return	immediately	if	n=1
• Else	do	2	subproblems of	size	 and	then	an	 merge

Recurrence	relation:



Analysis	intuitively
This	recurrence	is	common,	you	just	“know”	it’s	O(n log n)

Merge	sort	is	relatively	easy	to	intuit	(best,	worst,	and	average):
• The	recursion	“tree”	will	have	height
• At	each	level	we	do	a	total amount	of	merging	equal	to	



Analysis	more	formally	
(One	of	the	recurrence	classics)

For	simplicity,	ignore	constants	(let	constants	be	)
T(1)	=	1																																												
T(n)	=	2T(n/2)	+	n

=	2(2T(n/4)	+	n/2)	+	n	
=	4T(n/4)	+	2n	
=	4(2T(n/8)	+	n/4)	+	2n	
=	8T(n/8)	+	3n
….
=	2kT(n/2k)	+	kn

We	will	continue	to	recurse until	we	reach	the	base	case,	i.e.	T(1)	for	T(1),		n/2k	=	1,	i.e.,	log	n	=	k	

So	the	total	amount	of	work	is						2kT(n/2k)	+	kn =	2log	n	T(1)	+	n	log	n	=	n	+	n	log	n	=	O(n	log	n)



Divide-and-Conquer	Sorting

Two	great	sorting	methods	are	fundamentally	divide-and-conquer

1. Merge	Sort:	
• Sort	the	left	half	of	the	elements	(recursively)	
• Sort	the	right	half	of	the	elements	(recursively)
• Merge	the	two	sorted	halves	into	a	sorted	whole

2. Quicksort:			
• Pick	a	“pivot”	element	
• Divide	elements	into	“less-than	pivot”	and	“greater-than	pivot”
• Sort	the	two	divisions	(recursively	on	each)
• Answer	is	“sorted-less-than”,	followed	by	“pivot”,	followed	by	”sorted-greater-than”



Quicksort	Overview	(sneak	preview)

1. Pick	a	pivot	element

2. Partition	all	the	data	into:
A. The	elements	less	than	the	pivot
B. The	pivot
C. The	elements	greater	than	the	pivot

3. Recursively	sort	A	and	C

4. The	final	answer	is	“as	simple	as	A,	B,	C”	 (also	is	an	American	saying)



Cool	Resources

• http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

• http://www.sorting-algorithms.com/

• https://www.youtube.com/watch?v=t8g-iYGHpEA

Seriously,	check	them	out!	


