
Instructor:	Lilian	de	Greef
Quarter:	Summer	2017

CSE	373:	Data	Structures	and	Algorithms
Lecture	19:	Comparison	Sorting	Algorithms



Today

• Intro	to	sorting
• Comparison	sorting
• Insertion	Sort
• Selection	Sort
• Heap	Sort
• Merge	Sort



Mini-Announcements

• Homework	4	due	today

• Homework	5	coming	out	today,	due	Friday	5:00pm
• Can	get	started	using	material	covered	today
• Can	complete	using	material	covered	by	Monday



Sorting
Now	looking	at	algorithms	instead	of	data	structures!



Introduction	to	Sorting

• Stacks,	queues,	priority	queues,	and	dictionaries	all	focused	on	providing	
one	element	at	a	time

• But	often	we	know	we	want	“all	the	things”	in	some	order
• Humans	can	sort,	but	computers	can	sort	fast
• Very	common	to	need	data	sorted	somehow

• Alphabetical	list	of	people
• List	of	countries	ordered	by	population
• Search	engine	results	by	relevance
• List	store	catalogue	by	price
• …

• Algorithms	have	different	asymptotic	and	constant-factor	trade-offs
• No	single	“best”	sort	for	all	scenarios
• Knowing	one	way	to	sort	just	isn’t	enough



More	Reasons	to	Sort

General	technique	in	computing:	
Preprocess	data	to	make	subsequent	operations	faster

Example:	Sort	the	data	so	that	you	can
• Find	the	kth largest	in	constant	time	for	any	k
• Perform	binary	search	to	find	elements	in	logarithmic	time

Whether	the	performance	of	the	preprocessing	matters	depends	on
• How	often	the	data	will	change	(and	how	much	it	will	change)
• How	much	data	there	is



The	main	problem,	stated	carefully

For	now,	assume	we	have	n comparable	elements	in	an	array	and	we	want	to	rearrange	
them	to	be	in	increasing	order

Input:
• An	array	A of	data	records
• A	key	value	in	each	data	record
• A	comparison	function	

Effect:
• Reorganize	the	elements	of	A such	that	for	any	i and	j,		if	i < j then
• (Also,	Amust	have	exactly	the	same	data	it	started	with)
• Could	also	sort	in	reverse	order,	of	course

An	algorithm	doing	this	is	a	comparison	sort



Variations	on	the	Basic	Problem

1. Maybe	elements	are	in	a	linked	list	(could	convert	to	array	and		back	in	linear	
time,	but	some	algorithms	needn’t	do	so)

2. Maybe	ties	need	to	be	resolved	by	“original	array	position”
• Sorts	that	do	this	naturally	are	called

3. Maybe	we	must	not	use	more	than	O(1)	“auxiliary	space”
• Sorts	meeting	this	requirement	are	called

4. Maybe	we	can	do	more	with	elements	than	just	compare
• Sometimes	leads	to	faster	algorithms

5. Maybe	we	have	too	much	data	to	fit	in	memory
• Use	an	“ ”	algorithm



Sorting:	The	Big	Picture

Surprising	amount	of	neat	stuff	to	say	about	sorting:

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
W(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort
…

Bucket sort
Radix sort

External
sorting



Real-world	example	demo	time!
Help	me	sort	some	cards!



Insertion	Sort
• Idea:	At	step	k,	put	the	kth element	in	the	correct	position	among	the	first	
k elements

• Alternate	way	of	saying	this:
• Sort	first	two	elements
• Now	insert	3rd element	in	order
• Now	insert	4th element	in	order
• …

• “Loop	invariant”:	when	loop	index	is	i,	first	i elements	are	sorted

• Time?	
Best-case		______					Worst-case		______					“Average”	case	______



Selection	sort
• Idea:	At	step	k,	find	the	smallest	element	among	the	not-yet-sorted	elements	and	
put	it	at	position	k

• Alternate	way	of	saying	this:
• Find	smallest	element,	put	it	1st
• Find	next	smallest	element,	put	it	2nd
• Find	next	smallest	element,	put	it	3rd …

• “Loop	invariant”:	when	loop	index	is	i,	first	i elements	are	the	i smallest	
elements	in	sorted	order

• Time?	
Best-case		________											Worst-case		________									“Average”	case	_______



Insertion	Sort	vs.	Selection	Sort

• Different	algorithms

• Solve	the	same	problem

• Have	the	same	worst-case	and	average-case	asymptotic	complexity
• Insertion-sort	has	better	best-case	complexity;	preferable	when	input	is	
“mostly	sorted”

• Other	algorithms	are	more	efficient	for	large arrays	that	are	not
already	almost	sorted
• Insertion	sort	may	do	well	on	small	arrays



The	Big	Picture

Surprising	amount	of	juicy	computer	science:	2-3	lectures…
Simple

algorithms:
O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
W(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort (avg)
…

Bucket sort
Radix sort

External
sorting



Heap	sort

• Sorting	with	a	heap:
• insert each	arr[i],	or	better	yet	use	buildHeap
• for(i=0; i < arr.length; i++) 

arr[i] = 

• Worst-case	running	time:

• We	have	the	array-to-sort	and	the	heap
• So	this	is	not	an	in-place	sort
• There’s	a	trick	to	make	it	in-place…



In-place	heap	sort
• Treat	the	initial	array	as	a	heap	(via	buildHeap)
• When	you	delete	the	ith element,	put	it	at	arr[n-i]

• That	array	location	isn’t	needed	for	the	heap	anymore!

4 7 5 9 8 6 10 3 2 1

sorted	partheap	part

arr[n-i]=
deleteMin()

5 7 6 9 8 10 4 3 2 1

sorted	partheap	part

But	this	reverse	sorts	–
how	would	you	fix	that?



“AVL	sort”
• We	can	also	use	a	balanced	tree	to:
• insert each	element:	total	time	O(n log n)
• Repeatedly	deleteMin:	total	time	O(n log n)

• Better:	in-order	traversal	O(n),	but	still	O(n log n)	overall

• Compared	to	heap	sort
• both	are	O(n log n)	in	worst,	best,	and	average	case
• neither	parallelizes	well
• heap	sort	is	can	be	done	in-place,	has	better	constant	factors

Design	decision:	which	would	you	choose	between	Heap	Sort	and	AVL	Sort?
Why?



“Hash	sort”???

Finding	min	item	in	a	hashtable is	O(n),	so	this	would	be	a	slower,	more	
complicated	selection	sort



Divide	and	conquer

Very	important	technique	in	algorithm	design

1. Divide	problem	into	smaller	parts

2. Independently	solve	the	simpler	parts	
• Think	recursion
• Or	parallelism

3. Combine	solution	of	parts	to	produce	overall	solution

Two	great	sorting	methods	are	fundamentally	divide-and-conquer
(Merge	Sort	&	Quicksort)



Merge	Sort

Merge	Sort:	recursively…
• Sort	the	left	half	of	the	elements
• Sort	the	right	half	of	the	elements
• Merge	the	two	sorted	halves	into	a	sorted	whole



Real-world	example	demo	time!
Help	me	sort	some	cards!



Merge	sort

• To	sort	array	from	position	lo to	position	hi:
• If	range	is	1	element	long,	it	is	already	sorted!
• Else:	

• Sort	from	lo to	(hi+lo)/2
• Sort	from	(hi+lo)/2 to	hi
• Merge	the	two	halves	together

• Merging	takes	two	sorted	parts	and	sorts	everything
• O(n)	but	requires	auxiliary	space…

8 2 9 4 5 3 1 6



Merge	Sort:	Example	focused	on	merging

Start	with:	 8 2 9 4 5 3 1 6

After	recursion:
(not	magic	J)

Merge:	
Use	3	“fingers”
and	1	more	array

2 4 8 9 1 3 5 6

(After	merge,	
copy	back	to	
original	array)

Main	array

Auxiliary	array

Main	array

Main	array



Merge	Sort:	Example	showing	recursion

8		2			9			4 5			3			1			6

8			2 1			69			4 5			3

8 2

2			8

2			4			8			9

1			2			3			4			5			6			8			9

Merge

Merge

Merge

Divide

Divide

Divide

1	Element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

4				9 3			5 1			6

1			3			5			6



One	way	to	practice	on	your	own	time:

• Make	yourself	an	unsorted	array
• Try	using	one	of	the	sorting	algorithms	on	it
• You	know	you	got	the	right	end	result	if	it	comes	out	sorted
• Can	use	the	same	example	for	merge	sort	as	the	previous	slide	to	
double	check	in-between	steps



Some	details:	saving	a	little	time

• What	if	the	final	steps	of	our	merge	looked	like	this:

• Wasteful	to	copy	to	the	auxiliary	array	just	to	copy	back…

2 4 5 6 1 3 8 9

1 2 3 4 5 6

Main	array

Auxiliary	array



Some	details:	saving	a	little	time
• If	left-side	finishes	first,	just	stop	the	merge	and	copy	back:

• If	right-side	finishes	first,	copy	dregs	into	right	then	copy	back

Main	array

Auxiliary	array

Main	array

Auxiliary	array



Some	details:	saving	space	and	copying
Simplest	/	Worst:	
Use	a	new	auxiliary	array	of	size	(hi-lo) for	every	merge

Better:
Use	a	new	auxiliary	array	of	size	n for	every	merging	stage

Better:
Reuse	same	auxiliary	array	of	size	n for	every	merging	stage

Best	(but	a	little	tricky):
Don’t	copy	back	– at	2nd,	4th,	6th,	…	merging	stages,	use	the	original	array	as	the	auxiliary	array	and	
vice-versa
• Need	one	copy	at	end	if	number	of	stages	is	odd



Swapping	Original	/	Auxiliary	Array	(“best”)

(Arguably	easier	to	code	up	without	recursion	at	all)

Merge	by	1

Merge	by	2

Merge	by	4

Merge	by	8

Merge	by	16

Copy	if	Needed

• First	recurse down	to	lists	of	size	1
• As	we	return	from	the	recursion,	swap	between	arrays

Auxiliary	array

Main	array

Auxiliary	array

Main	array

Auxiliary	array

Main	array

Main	array



Cool	Resources

• http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

• http://www.sorting-algorithms.com/

• https://www.youtube.com/watch?v=t8g-iYGHpEA


