CSE 373: Data Structures and Algorithms Lecture 19: Comparison Sorting Algorithms

Instructor: Lilian de Greef
Quarter: Summer 2017

Today

- Intro to sorting
- Comparison sorting
- Insertion Sort
- Selection Sort
- Heap Sort
- Merge Sort

Mini-Announcements

- Homework 4 due today
- Homework 5 coming out today, due Friday 5:00pm
- Can get started using material covered today
- Can complete using material covered by Monday

Sorting

Now looking at algorithms instead of data structures!

Introduction to Sorting

- Stacks, queues, priority queues, and dictionaries all focused on providing one element at a time
- But often we know we want "all the things" in some order
- Humans can sort, but computers can sort fast
- Very common to need data sorted somehow
- Alphabetical list of people -sorting midterms by name
- List of countries ordered by population
 dates into chronological order
- Search engine results by relevance
- List store catalogue by price
- ...
- Algorithms have different asymptotic and constant-factor trade-offs
- No single "best" sort for all scenarios
- Knowing one way to sort just isn't enough

More Reasons to Sort

General technique in computing:
Preprocess data to make subsequent operations faster

Example: Sort the data so that you can

- Find the $\mathrm{k}^{\text {th }}$ largest in constant time for any k
- Perform binary search to find elements in logarithmic time

Whether the performance of the preprocessing matters depends on

- How often the data will change (and how much it will change)
- How much data there is

The main problem, stated carefully

For now, assume we have n comparable elements in an array and we want to rearrange them to be in increasing order

Input:

- An array A of data records
- A key value in each data record
- A comparison function

Effect:

- Reorganize the elements of A such that for any i and j, if $i<j$ then
- (Also, A must have exactly the same data it started with)
- Could also sort in reverse order, of course

An algorithm doing this is a comparison sort

Variations on the Basic Problem

1. Maybe elements are in a linked list (could convert to array and back in linear time, but some algorithms needn't do so)
2. Maybe ties need to be resolved by "original array position"

- Sorts that do this naturally are called stable sort

3. Maybe we must not use more than $O(1)$ "auxiliary space"

- Sorts meeting this requirement are called in-place sort

4. Maybe we can do more with elements than just compare

- Sometimes leads to faster algorithms

5. Maybe we have too much data to fit in memory

- Usean" external "algorithm

Sorting: The Big Picture

Surprising amount of neat stuff to say about sorting:

Insertion sort Selection sort Shell sort

Heap sort Merge sort Quick sort

Bucket sort Radix sort

Handling huge data sets

External sorting

Real-world example demo time!

Help me sort some cards!

Insertion Sort

- Idea: At step k, put the $k^{\text {th }}$ element in the correct position among the first k elements
- Alternate way of saying this:
- Sort first two elements
- Now insert $3^{\text {rd }}$ element in order
- Now insert $4^{\text {th }}$ element in order
- ...
- "Loop invariant": when loop index is i, first i elements are sorted
- Time?
$\underset{\text { almost sorted }}{\text { Best-case }} \frac{O(n)}{\text { Sorted }} \underset{\text { in reverse }}{\text { Worse }} \frac{O\left(n^{2}\right)}{\text { (see text) }}$ "Average" case $O\left(n^{2}\right)$

Selection sort

- Idea: At step k, find the smallest element among the not-yet-sorted elements and put it at position k
- Alternate way of saying this:
- Find smallest element, put it $1^{\text {st }}$
- Find next smallest element, put it $2^{\text {nd }}$
- Find next smallest element, put it $3^{\text {rd }}$...

$$
T(1)=1
$$

- "Loop invariant": when loop index is i, first i elements are the i smallest elements in sorted order
- Time?

Best-case

Worst-case
 "Average" case $)(\curvearrowleft 2)$

Insertion Sort vs. Selection Sort

- Different algorithms
- Solve the same problem
- Have the same worst-case and average-case asymptotic complexity
- Insertion-sort has better best-case complexity; preferable when input is "mostly sorted"
- Other algorithms are more efficient for large arrays that are not already almost sorted
- Insertion sort may do well on small arrays

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures...

$\begin{array}{c}\text { Fancier } \\ \text { algorithms: } \\ \mathrm{O}(n \log n)\end{array}$
$\begin{array}{c}\text { Comparison } \\ \text { lower bound: } \\ \Omega(n \log n)\end{array}$
Heap sort
Merge sort
Quick sort (avg)

Heap sort

- Sorting with a heap:
- insert each arr[i], or better yet use buildHeap
- for (i=0; $i<a r r . l e n g t h ; ~ i++)$ arr[i] =
- Worst-case running time: $O(n \log n)$
- We have the array-to-sort and the heap
- So this is not an in-place sort
- There's a trick to make it in-place...

In-place heap sort

But this reverse sorts how would you fix that?

- Treat the initial array as a heap (via buildHeap)

- When you delete the $i^{\text {th }}$ element, put it at arr [n-i]
- That array location isn't needed for the heap anymore!

"AVL sort"
- We can also use a balanced tree to:
- insert each element: total time $O(n \log n)$
- Repeatedly deleteMin: total time $O(n \log n)$
- Better: in-order traversal $O(n)$, but still $O(n \log n)$ overall
- Compared to heap sort
- both are $O(n \log n)$ in worst, best, and average case
- neither parallelizes well
- heap sort is can be done in-place, has better constant factors

Design decision: which would you choose between Heap Sort and AVL Sort?
Why?
"Hash sort"???

Finding min item in a hashtable is $O(\mathrm{n})$, so this would be a slower, more complicated selection sort

Divide and conquer

Very important technique in algorithm design

1. Divide problem into smaller parts
2. Independently solve the simpler parts

- Think recursion
- Or parallelism

3. Combine solution of parts to produce overall solution

Two great sorting methods are fundamentally divide-and-conquer (Merge Sort \& Quicksort)

Merge Sort

Merge Sort: recursively...

- Sort the left half of the elements
- Sort the right half of the elements
- Merge the two sorted halves into a sorted whole

Real-world example demo time!

Help me sort some cards!

Merge sort

- To sort array from position lo to position hi:
- If range is 1 element long, it is already sorted!

Case

- Else:
- Sort from lo to (hi+lo)/2
- Sort from (hi+lo)/2 to hi
- Merge the two halves together
- Merging takes two sorted parts and sorts everything
- $O(n)$ but requires auxiliary space...

Merge Sort: Example focused on merging

Start with:

8	2	9	4	5	3	1	6

After recursion:
(not magic ©)

Main array

Merge:
Use 3 "fingers"
and 1 more array
(After merge, copy back to
original array)

Merge Sort: Example showing recursion

One way to practice on your own time:

- Make yourself an unsorted array
- Try using one of the sorting algorithms on it
- You know you got the right end result if it comes out sorted
- Can use the same example for merge sort as the previous slide to double check in-between steps

Some details: saving a little time

- What if the final steps of our merge looked like this:

- Wasteful to copy to the auxiliary array just to copy back...

Some details: saving a little time

- If left-side finishes first, just stop the merge and copy back:

Main array

Auxiliary array

- If right-side finishes first, copy dregs into right then copy back

Some details: saving space and copying

Simplest / Worst:
Use a new auxiliary array of size (hi-lo) for every merge

Better:
Use a new auxiliary array of size n for every merging stage

Better:
Reuse same auxiliary array of size n for every merging stage

Best (but a little tricky):

Don't copy back - at $2^{\text {nd }}, 4^{\text {th }}, 6^{\text {th }}, \ldots$ merging stages, use the original array as the auxiliary array and vice-versa

- Need one copy at end if number of stages is odd

Swapping Original / Auxiliary Array ("best")

- First recurse down to lists of size 1
- As we return from the recursion, swap between arrays

(Arguably easier to code up without recursion at all)

Cool Resources

- http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
- http://www.sorting-algorithms.com/
- https://www.youtube.com/watch?v=t8g-iYGHpEA

