CSE 373: Data Structures and Algorithms Lecture 18: Minimum Spanning Trees (Graphs)

Instructor: Lilian de Greef

Quarter: Summer 2017

Today

- Spanning Trees
- Approach \#1: DFS
- Approach \#2: Add acyclic edges
- Minimum Spanning Trees
- Prim's Algorithm
- Kruskal's Algorithm

Announcements

- Midterms
- I brought midterms with me, can get them after class
- Next week, will only have them at CSE220 office hours
- Reminder: hw4 due on Friday!

Spanning Trees \& Minimum Spanning Trees

For undirected graphs

Introductory Example

All the roads in Seattle are covered in snow.
You were asked to shovel or plow snow from roads so that Seattle drivers can travel.
Because you don't want to shovel/plow that many roads, what is the smallest set of roads to clear in order to reconnect Seattle?

Spanning Trees

- Goal: Given a connected undirected graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$, find a minimal subset of edges such that \mathbf{G} is still connected
- A graph $\mathbf{G 2}=(\mathbf{V}, \mathbf{E 2})$ such that $\mathbf{G 2}$ is connected and removing any edge from E2 makes G2 disconnected

Observations

1. Any solution to this problem is a tree

- Recall a tree does not need a root; just means acyclic
- For any cycle, could remove an edge and still be connected

2. Solution not unique unless original graph was already a tree
3. Problem ill-defined if original graph not connected

- So $|\mathrm{E}|>=|\mathrm{V}|-1$

4. A tree with $|\mathbf{V}|$ nodes has edges

- So every solution to the spanning tree problem has
edges

Two Approaches

Different algorithmic approaches to the spanning-tree problem:

1. Do a graph traversal (e.g., depth-first search, but any traversal will do), keeping track of edges that form a tree
2. Iterate through edges; add to output any edge that does not create a cycle

Approach \#1: Using DFS (Example)

Do a graph traversal, keeping track of edges that form a tree
Stack:

Output:

Approach \#1: Spanning Tree via DFS

```
spanning_tree(Graph G) {
    for each node i: i.marked = false
    for some node i: f(i)
}
f(Node i) {
    i.marked = true
    for each j adjacent to i:
        if(!j.marked) {
            add(i,j) to output
            f(j) // DFS
        }
}
```

Correctness:
DFS reaches each node.
We add one edge to connect it to the already visited nodes.
Order affects result, not correctness.

Time:

Approach \#2: Add Acyclic Edges (Example)

Iterate through edges; add to output any edge that does not create a cycle Edges in some arbitrary order:
$(1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)$

Output:

Approach \#2: Add Acyclic Edges

Iterate through edges; output any edge that does not create a cycle.

Correctness (hand-wavy):

- Goal is to build an acyclic connected graph
- When we add an edge, it adds a vertex to the tree
- Else it would have created a cycle
- The graph is connected, so we reach all vertices

Efficiency:

- Depends on how quickly you can detect cycles
- (Not covered: there is a way to detect these cycles at almost average O(1))

Summary So Far

The spanning-tree problem - two approaches:

- Add nodes to partial tree approach
- Add acyclic edges approach

More compelling: we have a weighted undirected graph and we want a spanning tree with minimum total weight
a.k.a. the
spanning-tree problem

Introductory Example: version 2

All the roads in Seattle are covered in snow. You were asked to shovel or plow snow from roads so that Seattle drivers can travel. Because you don't want to shovel/plow that many roads, what is the smallest set of roads to clear in order to reconnect Seattle?
Because you want to do the minimum amount of effort, what is the shortest total distance to clear in order to reconnect Seattle?

Minimum Spanning Tree: Example Uses

How to most efficiently lay out...

- Telephone lines
- Electrical power lines
- Hydraulic pipes
- TV cables
- Computer networks (like the Internet!)

Minimum Spanning Tree Algorithms

The minimum-spanning-tree problem

- Given a weighted undirected graph, give a spanning tree of minimum weight
- Same two approaches, with minor modifications, will work

Algorithm for Unweighted Graph	Similar Algorithm for Weighted Graph
BFS for shortest path	(shortest path)
DFS for spanning tree	Algorithm
Adding acyclic edges approach for spanning tree	(minimum spanning tree)
(minimum spanning tree)	

Prim's Algorithm: Idea

Idea: Grow a tree by adding an edge from the "known" vertices to the "unknown" vertices. Pick the edge with the smallest weight that connects "known" to "unknown."

Recall Dijkstra "picked edge with closest known distance to source"

- That is not what we want here
- Otherwise identical (!)

Prim's Algorithm: Pseudocode

1. For each node v, set v.cost $=\infty$ and v.known $=$ false
2. Choose any node v
a) Mark v as known
b) For each edge (v, u) with weight w, set $u . c o s t=w$ and $u . p r e v=v$
3. While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost
b) Mark v as known and add (v, v.prev) to output
c) For each edge ($v, u)$ with weight w,
if(w < u.cost) \{
u.cost = w;
u.prev = v;
\}

Practice Time!

Using Prim's Algorithm starting at vertex A, what's the minimum spanning tree?

A) $(A, B),(A, C),(A, D),(D, E),(C, F),(E, G)$
B) $(B, E),(C, D),(D, A),(E, D),(F, C),(G, E)$
C) $(B, A),(C, A),(D, A),(E, D),(F, C),(G, E)$
D) $(B, A),(C, D),(D, A),(E, D),(F, C),(G, D)$

vertex	known?	cost	prev
A			
B			
C			
D			
E			
F			
G			

(extra space for scratch-work)

Prim's Algorithm: Example

vertex	known?	cost	prev
A			
B			
C			
D			
E			
F			
G			

(extra space for scratch-work)

Analysis

- Correctness ??
- A bit tricky
- Intuitively similar to Dijkstra
- Run-time
- Same as Dijkstra
- $O(|E| \log |V|)$ using a priority queue
- Costs/priorities are just edge-costs, not path-costs

Kruskal's Algorithm: Idea

Idea:
Grow a forest out of edges that do not grow a cycle, just like for the spanning tree problem.

But now consider the edges in order by

Kruskal's Algorithm: Pseudocode

1. Sort edges by weight (better: put in min-heap)
2. Each node in its own set
3. While output size < |V|-1

- Consider next smallest edge (u, v)
- If adding edge (u, v) doesn't introduce cycles, output (u, v)

Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: $(A, B),(C, F),(A, C)$
3: (E,G)
5: (D,G), (B,D)

6: (D,F)
10: (F,G)

Output:
(extra space for scratch-work)

Kruskal's Algorithm: Correctness

It clearly generates a spanning tree. Call it T_{K}.
Suppose T_{k} is not minimum:
Pick another spanning tree $T_{\text {min }}$ with lower cost than T_{K}
Pick the smallest edge $e_{1}=(u, v)$ in T_{k} that is not in $T_{\text {min }}$
$\mathrm{T}_{\text {min }}$ already has a path p in $\mathrm{T}_{\min }$ from u to v
\Rightarrow Adding e_{1} to $\mathrm{T}_{\text {min }}$ will create a cycle in $\mathrm{T}_{\text {min }}$
Pick an edge e_{2} in p that Kruskal's algorithm considered after adding e_{1} (must exist: u and v unconnected when e_{1} considered)
$\Rightarrow \operatorname{cost}\left(e_{2}\right) \geq \operatorname{cost}\left(e_{1}\right)$
\Rightarrow can replace e_{2} with e_{1} in $T_{\text {min }}$ without increasing cost!
Keep doing this until $T_{\text {min }}$ is identical to T_{K}
$\Rightarrow \mathrm{T}_{\mathrm{K}}$ must also be minimal - contradiction!

