
Instructor:	Lilian	de	Greef
Quarter:	Summer	2017

CSE	373:	Data	Structures	and	Algorithms
Lecture	18:	Minimum	Spanning	Trees	(Graphs)

Today

• Spanning	Trees
• Approach	#1:	DFS
• Approach	#2:	Add	acyclic	edges

• Minimum	Spanning	Trees
• Prim’s	Algorithm
• Kruskal’s Algorithm

Announcements

• Midterms
• I	brought	midterms	with	me,	can	get	them	after	class
• Next	week,	will	only	have	them	at	CSE220	office	hours

• Reminder:	hw4	due	on	Friday!

Spanning	Trees	&	
Minimum	Spanning	Trees
For	undirected	graphs

Introductory	Example
All	the	roads	in	Seattle	are	covered	in	snow.	
You	were	asked	to	shovel	or	plow	snow	from	roads	so	that	Seattle	
drivers	can	travel.
Because	you	don’t	want	to	shovel/plow	that	many	roads,	what	is	the	
smallest	set	of	roads	to	clear	in	order	to	reconnect	Seattle?

Spanning	Trees
• Goal:	Given	a	connected undirected	graph	G=(V,E),	find	a	minimal	
subset	of	edges	such	that	G is	still	connected
• A	graph	G2	=	(V,E2)	such	that	G2 is	connected	and	removing	any	edge	from	
E2makes	G2 disconnected

Observations

1. Any	solution	to	this	problem	is	a	tree
• Recall	a	tree	does	not	need	a	root;	just	means	acyclic
• For	any	cycle,	could	remove	an	edge	and	still	be	connected

2. Solution	not	unique	unless	original	graph	was	already	a	tree

3. Problem	ill-defined	if	original	graph	not	connected
• So	|E|	>=	|V|-1

4. A	tree	with	|V| nodes	has	 edges
• So	every	solution	to	the	spanning	tree	problem	has	 edges

Two	Approaches

Different	algorithmic	approaches	to	the	spanning-tree	problem:

1. Do	a	graph	traversal	(e.g.,	depth-first	search,	but	any	traversal	will	
do),	keeping	track	of	edges	that	form	a	tree

2. Iterate	through	edges;	add	to	output	any	edge	that	does	not	create	
a	cycle

Approach	#1:	Using	DFS	(Example)

Stack:

Output:

1

2

3

4

5

6

7

Do	a	graph	traversal,	keeping	track	of	edges	that	form	a	tree

Approach	#1:	Spanning	Tree	via	DFS

spanning_tree(Graph G) {
for each node i: i.marked = false
for some node i: f(i)

}
f(Node i) {

i.marked = true
for each j adjacent to i:

if(!j.marked) {
add(i,j) to output
f(j) // DFS

}
}

Correctness:	
DFS	reaches	each	node.		
We	add	one	edge	to	connect	it	
to	the	already	visited	nodes.		
Order	affects	result,	not	
correctness.

Time:

Iterate	through	edges;	add	to	output	any	edge	that	does	not	create	a	cycle
Edges	in	some	arbitrary	order:

(1,2),		(3,4),	 (5,6),	 (5,7),		(1,5),	 (1,6),	 (2,7),	 (2,3),	 (4,5),	 (4,7)

Output:

Approach	#2:	Add	Acyclic	Edges	(Example)

1

2

3

4

5

6

7

Approach	#2:	Add	Acyclic	Edges

Iterate	through	edges;	output	any	edge	that	does	not	create	a	cycle.

Correctness	(hand-wavy):
• Goal	is	to	build	an	acyclic	connected	graph
• When	we	add	an	edge,	it	adds	a	vertex	to	the	tree	

• Else	it	would	have	created	a	cycle
• The	graph	is	connected,	so	we	reach	all	vertices

Efficiency:
• Depends	on	how	quickly	you	can	detect	cycles
• (Not	covered:	there	is	a	way	to	detect	these	cycles	at	almost	average O(1))

Summary	So	Far

The	spanning-tree problem – two	approaches:
• Add	nodes	to	partial	tree	approach
• Add	acyclic	edges	approach

More	compelling:	we	have	a	weighted undirected	graph	and	we	want	a	
spanning	tree	with	minimum	total	weight

a.k.a.	the	 spanning-tree problem

Introductory	Example:	version	2
All	the	roads	in	Seattle	are	covered	in	snow.	
You	were	asked	to	shovel	or	plow	snow	from	roads	so	that	Seattle	drivers	can	travel.
Because	you	don’t	want	to	shovel/plow	that	many	roads,	what	is	the	smallest	set	of	
roads	to	clear	in	order	to	reconnect	Seattle?
Because	you	want	to	do	the	minimum	amount	of	effort,	what	is	the	shortest	total	
distance to	clear	in	order	to	reconnect	Seattle?

A B

C
D

F

E

G

2

12 5

1
1

1

2 6
5

3

10

Minimum	Spanning	Tree:	Example	Uses

How	to	most	efficiently	lay	out…
• Telephone	lines
• Electrical	power	lines
• Hydraulic	pipes
• TV	cables
• Computer	networks	(like	the	Internet!)

Minimum	Spanning	Tree	Algorithms
The	minimum-spanning-tree problem
• Given	a	weighted	undirected	graph,	give	a	spanning	tree	of	minimum	weight
• Same	two	approaches,	with	minor	modifications,	will	work

Algorithm for	Unweighted	Graph Similar	Algorithm	for	Weighted	Graph

BFS	for shortest	path Algorithm	
(shortest	path)

DFS	for spanning	tree Algorithm	
(minimum	spanning	tree)

Adding	acyclic	edges	approach
for	spanning	tree

Algorithm	
(minimum	spanning	tree)

Prim’s	Algorithm:	Idea

Idea:	Grow	a	tree	by	adding	an	edge	from	the	“known”	vertices	to	the	
“unknown”	vertices.		Pick	the	edge	with	the	smallest	weight	that	
connects	“known”	to	“unknown.”

Recall	Dijkstra “picked	edge	with	closest	known	distance	to	source”	
• That	is	not	what	we	want	here
• Otherwise	identical	(!)

Prim’s	Algorithm:	Pseudocode

1. For	each	node	v,	set		v.cost = ¥ and v.known = false

2. Choose	any	node	v
a) Mark	v as	known
b) For	each	edge	(v,u) with	weight	w,	set	u.cost=w and	u.prev=v

3. While	there	are	unknown	nodes	in	the	graph
a) Select	the	unknown	node	v with	lowest	cost
b) Mark	v as	known	and	add	(v, v.prev) to	output
c) For	each	edge	(v,u) with	weight	w,

if(w < u.cost) {
u.cost = w;
u.prev = v;

}

vertex known? cost prev

A

B

C

D

E

F

G

A B

C
D

F

E

G

2

12 5

1
1

1

2 6
5

3

10

A) (A,B),		(A,C),		(A,D),		(D,E),		(C,F),		(E,G)

B) (B,E),		(C,D),		(D,A),		(E,D),		(F,	C),		(G,E)

C) (B,A),		(C,A),		(D,A),		(E,D),		(F,	C),		(G,E)

D) (B,A),		(C,D),		(D,A),		(E,D),		(F,	C),		(G,D)

Practice Time!	
Using	Prim’s	Algorithm	starting	at	vertex	A,	what’s	the	minimum	spanning	tree?

(extra	space	for	scratch-work)

Prim’s	Algorithm:	Example
vertex known? cost prev

A

B

C

D

E

F

G

A B

C
D

F

E

G

2

12 5

1
1

1

2 6
5

3

10

(extra	space	for	scratch-work)

Analysis

• Correctness	??	
• A	bit	tricky
• Intuitively	similar	to	Dijkstra

• Run-time
• Same	as	Dijkstra
• O(|E|log|V|)	using	a	priority	queue

• Costs/priorities	are	just	edge-costs,	not	path-costs

Kruskal’s Algorithm:	Idea

Idea:	
Grow	a	forest	out	of	edges	that	do	not	grow	a	cycle,	
just	like	for	the	spanning	tree	problem.		

But	now	consider	the	edges	in	order	by

Kruskal’s Algorithm:	Pseudocode

1. Sort	edges	by	weight	(better:	put	in	min-heap)
2. Each	node	in	its	own	set
3. While	output	size	<	|V|-1
• Consider	next	smallest	edge	(u,v)
• If	adding	edge(u,v) doesn’t	introduce	cycles,	output	(u,v)

Example	

Edges	in	sorted	order:
1:		(A,D),	(C,D),	(B,E),	(D,E)
2:		(A,B),	(C,F),	(A,C)
3:		(E,G)
5:		(D,G),	(B,D)
6:		(D,F)
10:	(F,G)

Output:

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

(extra	space	for	scratch-work)

Kruskal’s Algorithm:	Correctness

It	clearly	generates	a	spanning	tree.	Call	it	TK.

Suppose	TK is	notminimum:
Pick	another	spanning	tree	Tmin with	lower	cost than	TK
Pick	the	smallest	edge	e1=(u,v) in	TK that	is	not	in	Tmin
Tmin already	has	a	path	p in	Tmin from	u to	v
Þ Adding	e1 to	Tmin will	create	a	cycle	in	Tmin

Pick	an	edge	e2 in	p that	Kruskal’s algorithm	considered	after	adding	e1 (must	
exist:	u	and	v	unconnected	when	e1	considered)
Þ cost(e2)	³ cost(e1)
Þ can	replace	e2 with	e1 in	Tmin without	increasing	cost!

Keep	doing	this	until	Tmin is	identical	to	TK
Þ TK must	also	be	minimal	– contradiction!

