CSE 373: Data Structures and Algorithms

Lecture 17: Finish Dijkstra’s Algorithm,
Preserving Abstractions (Software Design), Spanning Trees

Instructor: Lilian de Greef
Quarter: Summer 2017

Dijkstra’s Algorithm (Pseudocode)

— the following algorithm for finding all the single-source
shortest paths from one particular source vertex, in a weighted graph (directed or
undirected) with no negative-weight edges:

1. Foreachnodev, set v.cost = © and v.known = false
2. Setsource.cost = 0

3. While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost
b) Mark v as known
c) Foreachedge (v, u) with weight w,
cl = v.cost + w //costof best path through v to u
c2 = u.cost // cost of best path to u previously known
if(cl < c2){ // if the path through v is better
u.cost = cl
u.path = v // for computing actual paths
}

Correctness: Intuition

Rough intuition:

All the “known” vertices have the correct shortest path
* True initially: shortest path to start node has cost 0

* If it stays true every time we mark a node “known”, then by induction this holds and
eventually everything is “known”

Key fact we need: When we mark a vertex “known” we won’t discover a
shorter path later!

 This holds only because Dijkstra’s algorithm picks the node with the next shortest
path-so-far

* The proof is by contradiction...

Correctness: The Cloud (Rough Sketch)

Next shortest path from
inside the known cloud

The Cloud of
Better path Known Vertices

tov?

Source

v

* Suppose v is the next node to be marked known (next to add to “the cloud of known vertices”)
* The best-known path to v must have only nodes “in the cloud”

— Else we would have picked a node closer to the cloud than v
* Suppose the actual shortest path to v is different

— It won’t use only cloud nodes, or we would know about it

— So it must use non-cloud nodes. Let w be the first non-cloud node on this path.

— The part of the path up to w is already known and must be shorter than the best-known path to v.

— So v would not have been picked. Contradiction!

Efficiency, first approach

Use pseudocode to determine asymptotic run-time
* Notice each edge is processed only once

dijkstra (Graph G, Node start) ({
for each node: x.cost=infinity, x.known=false

start.cost = 0
while (not all nodes are known) {
b = find unknown node with smallest cost
b.known = true
for each edge (b,a) in G
if(!'a.known)
if(b.cost + weight((b,a)) < a.cost) {
a.cost = b.cost + weight ((b,a))
a.path = b

} -

Improving asymptotic running time

* So far: O(|V]?)

* We had a similar “problem” with topological sort being O(|V|?) due to
each iteration looking for the node to process next

* We solved it with a queue of zero-degree nodes
* But here we need the lowest-cost node and costs can change as we process edges

e Solution?
e A holding all unknown nodes,
* But must support operation

* Must maintain a reference from each node to its current position in the priority queue

* Conceptually simple, but can be a pain to code up

Efficiency, second approach

Use pseudocode to determine asymptotic run-time

dijkstra (Graph G, Node start) ({
for each node: x.cost=infinity, x.known=false

start.cost = 0
build-heap with all nodes
while (heap is not empty) {
b = deleteMin|()
b.known = true
for each edge (b,a) in G
if (!a.known)
if(b.cost + weight((b,a)) < a.cost) {
decreaseKey (a, "'new cost - old cost”)

a.path = b

Dense vs. Sparse (again!)

* First approach: O(|V|?)
e Second approach: O(|V|log|V|+|E|log]|V])

* So which is better?
* Dense or Sparse? O(|V]|log|V|+|E|log|V|) (if |[E| > |V], thenit’s O(|E|log|V]))
* Dense or Sparse? O(|V|?)

* But, remember these are worst-case and asymptotic
* Priority queue might have slightly worse constant factors
* On the other hand, for “normal graphs”, we might call decreaseKey rarely
(or not percolate far), making |E|log|V| more like |E|

Preserving Abstractions

A software-design interlude from Graphs

Memory “under the hood”: Stack Space and Heap Space

Code
int x; Date today = new Date(2017,7,31) Class Date {
int x = 2; Date tomorrow = today; int year;
int y = x; tomorrow.addDate () ; int month;
y = 43 return today.getMonth () ; int day;
return x; }

COMPUTER MEMORY

Stack Space Heap Space

(extra space for notes / scratch work)

Abstractions

The key idea of code
* Clients do not know how it is implemented
* Clients do not need to know

* Clients cannot “break the abstraction”
no matter what they do

Abstraction: Separation of Clients and Implementation

Data Structure Code:

Data Structure Client: Priority Queue
“not trusted by ADT Example: * Should document how
implementer” new PO () operations can be used and
what is checked (raising
insert (..) appropriate exceptions)
e Can perform any
sequence of ADT deleteMin (..) * If used correctly, correct
operations | priority queue for any client
1sEmpty ()

* Can do anything type- in this example

checker allows on any

accessible objects * Client “cannot see” the

implementation

* e.g. binary min heap

Our example S

. // some private fields (year, month, day)
int getYear () {..}
void setYear (int y) {..}

. // more methods

* A priority queue with to-
do items, so earlier dates |,
“come first” ToDoTtem {

. // some private fields (date, description)
void setDate (Date d) {..}

e Exact method names and void setDescription(String d) {..}
. . .. // more methods
behavior not essential to }
example ToDOPQ {

. // some private fields (array, size, ..)
ToDoPQ () {..}

void insert (ToDoItem t) {..}

ToDoItem deleteMin () {..}

boolean isEmpty () {..}

What’s the mistake?

ToDoPQ {
.. // other fields
public ToDolItem[] heap;
ToDoPQ () {...}
void insert (ToDoItem t) {..}

// client:

pg = new ToDoPQ() ;

pg.heap = null;

pg.insert (..); // What will likely happen here?

Today’s lecture: private does not solve all your problems!
Upcoming pitfalls can occur even with all private fields

Less obvious mistakes

public class ToDoPQ {
.. // all private fields
public ToDoPQ () ({..}
void insert (ToDoItem 1) {..}

// client:

ToDoPQ pg = new ToDoPQ() ;

// Make item with description “do a thing
ToDoItem i = new ToDoItemf(..);
pg.insert (i) ;

i.setDescription (Yeat pie”);

pg.insert (i); // same object after update
x = deleteMin(); // x's description???

y = deleteMin(); // y’s description???

144

Aliasing and mutation

Stack Space Heap Space

date:
»_description: “...”

ToDolItem 1

ToDoPQ pg

 Client was able to update something inside the abstraction because client
had an alias to it!

* |tis too hard to reason about and document what should happen, so better
software designs avoid the issue

Practice:

What year does x have? What happens on the last line?

ToDoPQ pgq = ToDoPQ () ;
ToDoItem il = ToDoItem(..); // year 2013
ToDoltem i2 = ToDoItem(..); // year 2014

pPg.insert (12
il.setDate (
x = deleteMi

pg.insert (11);
) ;
) // year 2015
n(); // What year does x have?
ToDoltem 13 = ToDoItem(...);
pd.insert (i3); // year 2016
i3.setDate () ;

ToDoltem i4 = ToDoItem(..); // year 2017
pg.insert (i4); // What happens here?

A)

B)

C)

2014,
inserts item for 2017.

2015,
inserts item for 2017.

2014,
throws exception.

2015,
throws exception.

Practice

Stack Space

ToDoltem

ToDoltem

ToDoPQ pg

Heap Space

date:
description:

o ”

date:
description:

o ”

Practice

Stack Space

ToDoltem

ToDoltem

ToDoPQ pg

Heap Space

date:
description:

o ”

date:
description:

o ”

The general fix

* Avoid aliases into the internal data (the “red arrows”) by

* Do not use the same objects inside and outside the abstraction because two
sides do not know all mutation (field-setting) that might occur

* A first attempt: ToDoPQ {

void insert (ToDoItem i) {
ToDoltem internal 1 =
new ToDoltem(i.date, 1i.description);
.. // use only the internal object

}

Stack Space Heap Space

date:
o ”n

ToDoItem i description: “...

ToDoPQ pg

date:
description:

ToDoItem i = new ToDoItem(...);

pg = new ToDoPQ() ;

pg.insert (1) ;

i.setDescription (“some different thing”);
pg.insert (1) ;

X = deleteMin () ;

y = deleteMin (),

o ”

Stack Space Heap Space

date:
description: “...”

date:
o ”n

ToDoItem 1 o
description: “...

ToDoPQ pg

Date d = new Date(..)

ToDoItem 1 = new ToDolItem(d, “buy cake”);
pg = new ToDoPQ() ;

pg.insert (1) ;

d.setYear (2015) ;

Deep copying

* For copying to work fully, usually need to also make copies of all objects referred
to (and that they refer to and so on...)

* All the way down to int, double, String, ..
 Called (versus our first attempt shallow-copy)

* Rule of thumb: Deep copy of things passed into abstraction

ToDoPQ {

volid insert (ToDoItem 1) {
ToDoItem internal 1 =
ToDoltem(new Date(..),
i.description);
.. // use only the internal object

}

That was copy-in, now copy-out...

* So we have seen:
* Need to deep-copy data passed into abstractions to avoid pain and suffering

* Next:

* Need to deep-copy data passed out of abstractions to avoid pain and
suffering (unless data is “new” or no longer used in abstraction)

* Then:

* If objects are immutable (no way to update fields or things they refer to), then
copying unnecessary

Example: getMin

Stack Space

ToDoltem x

ToDoPQ pg

Heap Space

date:
description: “...”

ToDoItem 1 =

pa =
ToDoltem x =

new ToDoPQ () ;

x.setDate (..) ;

new ToDoItem(...);

pg.getMin () ;
// Uh oh!

public class ToDoPQ {
ToDolItem getMin () {
ToDoItem ans = heap[0];
return ans;

The fix: Copy-Out

* Just like we deep-copy objects from clients before adding to our data structure,
we should deep-copy parts of our data structure and return the copies to clients

e Copy-in and copy-out

ToDoPQ {

ToDoItem getMin () {

int ans = heap[0];
ToDoItem (Date (...),

ans.description) ;

What about deleteMin?

ToDoPQ {

ToDoItem deleteMin () {
ToDoItem ans = heapl[0];
. // algorithm involving percolateDown
ans;

* Does not create a “red arrow” because object returned is no longer
part of the data structure

* Returns an alias to object that was in the heap, but now it is not, so
conceptual “ownership” “transfers” to the client

Less copying: use immutability

* (Deep) copying is one solution to our aliasing problems

e Another solution is

* Make it so nobody can ever change an object or any other objects it
can refer to (deeply)

* Allows “red arrows”, but immutability makes them harmless

* InJava, a £inal field cannot be updated after an object is
constructed, so helps ensure immutability
* But final is a “shallow” idea and we need “deep” immutability

This works

public class Date {
private final int year;
private final String month;
private final String day;
}
public class ToDoltem {
private final Date date;
private final String description;
}
public class ToDoPQ {
void insert (ToDoItem i) {/*no copy-in needed!*/}
ToDoItem getMin () {/*no copy-out needed!*/}

Notes:
* String objects are immutable in Java
* (Using String formonth and day is not great style though)

This does *not™ work

Date {
int year;
String month; // not final
String day;

ToDoItem ({
Date date;
String description;

ToDoPQ {
void insert (ToDoltem i) {/*no copy-in*/}
ToDoItem getMin () {/*no copy-out*/}

}

Client could mutate a Date’s month that is in our data structure
* So must do entire deep copy of ToDoItem

final is shallow

ToDoItem {
Date date;
String description;

* Here, final means no code can update the date or description
fields after the object is constructed

* So they will always refer to the same Date and String objects

* But what if those objects have their contents change?
e Cannot happen with String objects
* For Date objects, depends how we define Date

* So final is a “shallow” notion, but we can use it “all the way down” to
get deep immutability

This works

* When deep-copying, can “stop”
when you get to immutable data

* Copying immutable data is
wasted work. Such unnecessary
copies is poor style

Date { // immutable
int year;
String month;
String day;

ToDoItem {
Date date;
String description;

ToDoPQ {
ToDoItem getMin () {
int ans = heap[0];

ToDoItem(ans.date, // okay!
ans.description) ;

What about this?

public class Date { // immutable

}

public class ToDoltem { // immutable (unlike last slide)

}
public class ToDoPQ ({
// a second constructor that uses
// Floyd’s algorithm
volid PriorityQueue (ToDoltem[] items)
// what copying should we do?

{

To copy or not to copy?
* Array

* ToDoItem object

* Date object

Homework 4

* You are implementing a graph abstraction

* As provided, Vertex and Edge are immutable
* ButCollection<Vertex>and Collection<Edge> are not

* You might choose to add fields to Vertex or Edge that make them not
immutable

* Leads to more copy-in-copy-out, but that’s fine!

* Or you might leave them immutable and keep things like “best-path-cost-so-far”
in another dictionary (e.g., a HashMap)

There is more than one good design, but preserve your abstraction
* Great practice with a key concept in software design

Spanning Trees

Spanning Trees

* Goal: Given a connected undirected graph G=(V,E), find a minimal
subset of edges such that G is still connected

* A graph G2 = (V,E2) such that G2 is connected and removing any edge from
E2 makes G2 disconnected

Observations

1. Any solution to this problem is a tree
* Recall a tree does not need a root; just means acyclic
* For any cycle, could remove an edge and still be connected

2. Solution not unique unless original graph was already a tree

3. Problem ill-defined if original graph not connected
* So|E|>=|V]|1

4. Atree with |V| nodes has edges
* So every solution to the spanning tree problem has edges

Motivation

A connects all the nodes with as few edges as possible

* Example: A “phone tree” so everybody gets the message and no unnecessary
calls get made
* Bad example since would prefer a balanced tree

In most compelling uses, we have a weighted undirected graph and we want a tree
of least total cost

* Example: Electrical wiring for a house or clock wires on a chip
* Example: A road network if you cared about asphalt cost rather than travel time

This is the problem
* Will do that next lecture, after intuition from the simpler case

Two Approaches

Different algorithmic approaches to the spanning-tree problem:

1. Do a graph traversal (e.g., depth-first search, but any traversal will
do), keeping track of edges that form a tree

2. lterate through edges; add to output any edge that does not create
a cycle

Spanning tree via DFS

spanning tree (Graph G) {
for each node 1: i.marked = false
for some node i: £(1i)
}
f (Node i) {
i.marked = true
for each jJ adjacent to 1i:
if(!3.marked) {
add(i,Jj) to output
f(j3) // DFS

Correctness: DFS reaches each node. We add one edge to connect it
to the already visited nodes. Order affects result, not correctness.

Time: O(|E|)

Example: Approach #1

Stack 2

Output:

Second Approach

Iterate through edges; output any edge that does not create a cycle

Correctness (hand-wavy):
* Goalis to build an acyclic connected graph

* When we add an edge, it adds a vertex to the tree
* Else it would have created a cycle

* The graph is connected, so we reach all vertices

Efficiency:
* Depends on how quickly you can detect cycles
* Reconsider after the example

Example: Approach #2

Edges in some arbitrary order:

(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)
2

Output:

Practice with Design Decisions

Our three-eye-alien friend uncovered an impressively complete
and up-to-date family tree tracing all the way back to the ancient
emperor Qin Shi Huang. The alien wants to find a descendant of
this emperor who's still alive, and could use your advice!

(According to Wikipedia, Qin Shi Huang had ~50 children, wow!)
What data structure would you recommend?
Why?

What algorithm would you recommend?
Why?

