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Instructor: Lilian de Greef
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Dijkstra’s Algorithm (Pseudocode)

— the following algorithm for finding all the single-source
shortest paths from one particular source vertex, in a weighted graph (directed or
undirected) with no negative-weight edges:

1. Foreachnodev, set v.cost = © and v.known = false
2. Setsource.cost = 0

3. While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost
b) Mark v as known
c) Foreachedge (v, u) with weight w,
cl = v.cost + w //costof best path through v to u
c2 = u.cost // cost of best path to u previously known
if(cl < c2){ // if the path through v is better
u.cost = cl
u.path = v // for computing actual paths
}



Correctness: Intuition

Rough intuition:

All the “known” vertices have the correct shortest path
* True initially: shortest path to start node has cost 0

* If it stays true every time we mark a node “known”, then by induction this holds and
eventually everything is “known”

Key fact we need: When we mark a vertex “known” we won’t discover a
shorter path later!

 This holds only because Dijkstra’s algorithm picks the node with the next shortest
path-so-far

* The proof is by contradiction...



Correctness: The Cloud (Rough Sketch)
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* Suppose v is the next node to be marked known (next to add to “the cloud of known vertices”)
* The best-known path to v must have only nodes “in the cloud”

— Else we would have picked a node closer to the cloud than v
* Suppose the actual shortest path to v is different

— It won’t use only cloud nodes, or we would know about it

— So it must use non-cloud nodes. Let w be the first non-cloud node on this path.

— The part of the path up to w is already known and must be shorter than the best-known path to v.

— So v would not have been picked. Contradiction!



Efficiency, first approach

Use pseudocode to determine asymptotic run-time
* Notice each edge is processed only once

dijkstra (Graph G, Node start) ({
for each node: x.cost=infinity, x.known=false

start.cost = 0
while (not all nodes are known) {
b = find unknown node with smallest cost
b.known = true
for each edge (b,a) in G
if(!'a.known)
if(b.cost + weight((b,a)) < a.cost) {
a.cost = b.cost + weight ((b,a))
a.path = b

} -




Improving asymptotic running time

* So far: O(|V]?)

* We had a similar “problem” with topological sort being O(|V|?) due to
each iteration looking for the node to process next

* We solved it with a queue of zero-degree nodes
* But here we need the lowest-cost node and costs can change as we process edges

e Solution?
e A holding all unknown nodes,
* But must support operation

* Must maintain a reference from each node to its current position in the priority queue

* Conceptually simple, but can be a pain to code up



Efficiency, second approach

Use pseudocode to determine asymptotic run-time

dijkstra (Graph G, Node start) ({
for each node: x.cost=infinity, x.known=false

start.cost = 0
build-heap with all nodes
while (heap is not empty) {
b = deleteMin|()
b.known = true
for each edge (b,a) in G
if (!a.known)
if(b.cost + weight((b,a)) < a.cost) {
decreaseKey (a, "'new cost - old cost”)

a.path = b



Dense vs. Sparse (again!)

* First approach: O(|V|?)
e Second approach: O(|V|log|V|+|E|log]|V])

* So which is better?
* Dense or Sparse? O(|V]|log|V|+|E|log|V|) (if |[E| > |V], thenit’s O(|E|log|V]))
* Dense or Sparse? O(|V|?)

* But, remember these are worst-case and asymptotic
* Priority queue might have slightly worse constant factors
* On the other hand, for “normal graphs”, we might call decreaseKey rarely
(or not percolate far), making |E|log|V| more like |E|



Preserving Abstractions

A software-design interlude from Graphs



Memory “under the hood”: Stack Space and Heap Space

Code
int x; Date today = new Date(2017,7,31) Class Date {
int x = 2; Date tomorrow = today; int year;
int y = x; tomorrow.addDate () ; int month;
y = 43 return today.getMonth () ; int day;
return x; }

COMPUTER MEMORY

Stack Space Heap Space




(extra space for notes / scratch work)



Abstractions

The key idea of code
* Clients do not know how it is implemented
* Clients do not need to know

* Clients cannot “break the abstraction”
no matter what they do




Abstraction: Separation of Clients and Implementation

Data Structure Code:

Data Structure Client: Priority Queue
“not trusted by ADT Example: * Should document how
implementer” new PO () operations can be used and
what is checked (raising
insert (..) appropriate exceptions)
e Can perform any
sequence of ADT deleteMin (..) * If used correctly, correct
operations | priority queue for any client
1sEmpty ()

* Can do anything type- in this example

checker allows on any

accessible objects * Client “cannot see” the

implementation

* e.g. binary min heap




Our example S

. // some private fields (year, month, day)
int getYear () {..}
void setYear (int y) {..}

. // more methods

* A priority queue with to-
do items, so earlier dates |,
“come first” ToDoTtem {

. // some private fields (date, description)
void setDate (Date d) {..}

e Exact method names and void setDescription(String d) {..}
. . .. // more methods
behavior not essential to }
example ToDOPQ {

. // some private fields (array, size, ..)
ToDoPQ () {..}

void insert (ToDoItem t) {..}

ToDoItem deleteMin () {..}

boolean isEmpty () {..}




What’s the mistake?

ToDoPQ {
.. // other fields
public ToDolItem[] heap;
ToDoPQ () {...}
void insert (ToDoItem t) {..}

// client:

pg = new ToDoPQ() ;

pg.heap = null;

pg.insert (..); // What will likely happen here?

Today’s lecture: private does not solve all your problems!
Upcoming pitfalls can occur even with all private fields



Less obvious mistakes

public class ToDoPQ {
.. // all private fields
public ToDoPQ () ({..}
void insert (ToDoItem 1) {..}

// client:

ToDoPQ pg = new ToDoPQ() ;

// Make item with description “do a thing
ToDoItem i = new ToDoItemf(..);
pg.insert (i) ;

i.setDescription (Yeat pie”);

pg.insert (i); // same object after update
x = deleteMin(); // x's description???

y = deleteMin(); // y’s description???

144




Aliasing and mutation

Stack Space Heap Space

date:
»_description: “...”

ToDolItem 1

ToDoPQ pg

 Client was able to update something inside the abstraction because client
had an alias to it!

* |tis too hard to reason about and document what should happen, so better
software designs avoid the issue



Practice:

What year does x have? What happens on the last line?

ToDoPQ pgq = ToDoPQ () ;
ToDoItem il = ToDoItem(..); // year 2013
ToDoltem i2 = ToDoItem(..); // year 2014

pPg.insert (12
il.setDate (
x = deleteMi

pg.insert (11);
) ;
) // year 2015
n(); // What year does x have?
ToDoltem 13 = ToDoItem(...);
pd.insert (i3); // year 2016
i3.setDate ( ) ;

ToDoltem i4 = ToDoItem(..); // year 2017
pg.insert (i4); // What happens here?

A)

B)

C)

2014,
inserts item for 2017.

2015,
inserts item for 2017.

2014,
throws exception.

2015,
throws exception.



Practice
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Practice
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The general fix

* Avoid aliases into the internal data (the “red arrows”) by

* Do not use the same objects inside and outside the abstraction because two
sides do not know all mutation (field-setting) that might occur

* A first attempt: ToDoPQ {

void insert (ToDoItem i) {
ToDoltem internal 1 =
new ToDoltem(i.date, 1i.description);
.. // use only the internal object

}




Stack Space Heap Space

date:
o ”n

ToDoItem i description: “...

ToDoPQ pg

date:
description:

ToDoItem i = new ToDoItem(...);

pg = new ToDoPQ() ;

pg.insert (1) ;

i.setDescription (“some different thing”);
pg.insert (1) ;

X = deleteMin () ;

y = deleteMin (),

o ”




Stack Space Heap Space

date:
description: “...”

date:
o ”n

ToDoItem 1 o
description: “...

ToDoPQ pg

Date d = new Date(..)

ToDoItem 1 = new ToDolItem(d, “buy cake”);
pg = new ToDoPQ() ;

pg.insert (1) ;

d.setYear (2015) ;




Deep copying

* For copying to work fully, usually need to also make copies of all objects referred
to (and that they refer to and so on...)

* All the way down to int, double, String, ..
 Called (versus our first attempt shallow-copy)

* Rule of thumb: Deep copy of things passed into abstraction

ToDoPQ {

volid insert (ToDoItem 1) {
ToDoItem internal 1 =
ToDoltem(new Date(..),
i.description);
.. // use only the internal object

}




That was copy-in, now copy-out...

* So we have seen:
* Need to deep-copy data passed into abstractions to avoid pain and suffering

* Next:

* Need to deep-copy data passed out of abstractions to avoid pain and
suffering (unless data is “new” or no longer used in abstraction)

* Then:

* If objects are immutable (no way to update fields or things they refer to), then
copying unnecessary



Example: getMin

Stack Space

ToDoltem x

ToDoPQ pg

Heap Space

date:
description: “...”

ToDoItem 1 =

pa =
ToDoltem x =

new ToDoPQ () ;

x.setDate (..) ;

new ToDoItem(...);

pg.getMin () ;
// Uh oh!

public class ToDoPQ {
ToDolItem getMin () {
ToDoItem ans = heap[0];
return ans;




The fix: Copy-Out

* Just like we deep-copy objects from clients before adding to our data structure,
we should deep-copy parts of our data structure and return the copies to clients

e Copy-in and copy-out

ToDoPQ {

ToDoItem getMin () {

int ans = heap[0];
ToDoItem ( Date (...),

ans.description) ;




What about deleteMin?

ToDoPQ {

ToDoItem deleteMin () {
ToDoItem ans = heapl[0];
. // algorithm involving percolateDown
ans;

* Does not create a “red arrow” because object returned is no longer
part of the data structure

* Returns an alias to object that was in the heap, but now it is not, so
conceptual “ownership” “transfers” to the client



Less copying: use immutability

* (Deep) copying is one solution to our aliasing problems

e Another solution is

* Make it so nobody can ever change an object or any other objects it
can refer to (deeply)

* Allows “red arrows”, but immutability makes them harmless

* InJava, a £inal field cannot be updated after an object is
constructed, so helps ensure immutability
* But final is a “shallow” idea and we need “deep” immutability



This works

public class Date {
private final int year;
private final String month;
private final String day;
}
public class ToDoltem {
private final Date date;
private final String description;
}
public class ToDoPQ {
void insert (ToDoItem i) {/*no copy-in needed!*/}
ToDoItem getMin () {/*no copy-out needed!*/}

Notes:
* String objects are immutable in Java
* (Using String formonth and day is not great style though)



This does *not™ work

Date {
int year;
String month; // not final
String day;

ToDoItem ({
Date date;
String description;

ToDoPQ {
void insert (ToDoltem i) {/*no copy-in*/}
ToDoItem getMin () {/*no copy-out*/}

}

Client could mutate a Date’s month that is in our data structure
* So must do entire deep copy of ToDoItem



final is shallow

ToDoItem {
Date date;
String description;

* Here, final means no code can update the date or description
fields after the object is constructed

* So they will always refer to the same Date and String objects

* But what if those objects have their contents change?
e Cannot happen with String objects
* For Date objects, depends how we define Date

* So final is a “shallow” notion, but we can use it “all the way down” to
get deep immutability



This works

* When deep-copying, can “stop”
when you get to immutable data

* Copying immutable data is
wasted work. Such unnecessary
copies is poor style

Date { // immutable
int year;
String month;
String day;

ToDoItem {
Date date;
String description;

ToDoPQ {
ToDoItem getMin () {
int ans = heap[0];

ToDoItem(ans.date, // okay!
ans.description) ;




What about this?

public class Date { // immutable

}

public class ToDoltem { // immutable (unlike last slide)

}
public class ToDoPQ ({
// a second constructor that uses
// Floyd’s algorithm
volid PriorityQueue (ToDoltem[] items)
// what copying should we do?

{

To copy or not to copy?
* Array

* ToDoItem object

* Date object



Homework 4

* You are implementing a graph abstraction

* As provided, Vertex and Edge are immutable
* ButCollection<Vertex>and Collection<Edge> are not

* You might choose to add fields to Vertex or Edge that make them not
immutable

* Leads to more copy-in-copy-out, but that’s fine!

* Or you might leave them immutable and keep things like “best-path-cost-so-far”
in another dictionary (e.g., a HashMap)

There is more than one good design, but preserve your abstraction
* Great practice with a key concept in software design



Spanning Trees



Spanning Trees

* Goal: Given a connected undirected graph G=(V,E), find a minimal
subset of edges such that G is still connected

* A graph G2 = (V,E2) such that G2 is connected and removing any edge from
E2 makes G2 disconnected



Observations

1. Any solution to this problem is a tree
* Recall a tree does not need a root; just means acyclic
* For any cycle, could remove an edge and still be connected

2. Solution not unique unless original graph was already a tree

3. Problem ill-defined if original graph not connected
* So|E|>=|V]|1

4. Atree with |V| nodes has edges
* So every solution to the spanning tree problem has edges



Motivation

A connects all the nodes with as few edges as possible

* Example: A “phone tree” so everybody gets the message and no unnecessary
calls get made
* Bad example since would prefer a balanced tree

In most compelling uses, we have a weighted undirected graph and we want a tree
of least total cost

* Example: Electrical wiring for a house or clock wires on a chip
* Example: A road network if you cared about asphalt cost rather than travel time

This is the problem
* Will do that next lecture, after intuition from the simpler case



Two Approaches

Different algorithmic approaches to the spanning-tree problem:

1. Do a graph traversal (e.g., depth-first search, but any traversal will
do), keeping track of edges that form a tree

2. lterate through edges; add to output any edge that does not create
a cycle



Spanning tree via DFS

spanning tree (Graph G) {
for each node 1: i.marked = false
for some node i: £(1i)
}
f (Node i) {
i.marked = true
for each jJ adjacent to 1i:
if(!3.marked) {
add(i,Jj) to output
f(j3) // DFS

Correctness: DFS reaches each node. We add one edge to connect it
to the already visited nodes. Order affects result, not correctness.

Time: O(|E|)



Example: Approach #1

Stack 2

Output:



Second Approach

Iterate through edges; output any edge that does not create a cycle

Correctness (hand-wavy):
* Goalis to build an acyclic connected graph

* When we add an edge, it adds a vertex to the tree
* Else it would have created a cycle

* The graph is connected, so we reach all vertices

Efficiency:
* Depends on how quickly you can detect cycles
* Reconsider after the example



Example: Approach #2

Edges in some arbitrary order:

(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)
2

Output:









Practice with Design Decisions

Our three-eye-alien friend uncovered an impressively complete
and up-to-date family tree tracing all the way back to the ancient
emperor Qin Shi Huang. The alien wants to find a descendant of
this emperor who's still alive, and could use your advice!

(According to Wikipedia, Qin Shi Huang had ~50 children, wow!)
What data structure would you recommend?
Why?

What algorithm would you recommend?
Why?




