CSE 373: Data Structures and Algorithms

Lecture 17: Finish Dijkstra’s Algorithm,
Preserving Abstractions (Software Design), Spanning Trees

Instructor: Lilian de Greef
Quarter: Summer 2017

Today

* Wrap up Dijkstra’s algorithm
* Software Design: Preserving Abstraction
* Introduce Minimum Spanning Trees

Dijkstra’s Algorithm (Pseudocode)

— the following algorithm for finding all the single-source
shortest paths from one particular source vertex, in a weighted graph (directed or
undirected) with no negative-weight edges:

1. Foreachnodev, set v.cost = © and v.known = false
2. Setsource.cost = 0

3. While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost
b) Mark v as known
c) Foreachedge (v, u) with weight w,
cl = v.cost + w //costof best path through v to u
c2 = u.cost // cost of best path to u previously known
if(cl < c2){ // if the path through v is better
u.cost = cl
u.path = v // for computing actual paths
}

Correctness: Intuition ﬁ (Msa v& (

Rough intuition:
All the “known” vertices have the correct shortest path (on2
* True initially: shortest path to start node has cost0 < TR

* If it stays true every time we mark a node “known”, then by induction this holds and
eventually everything is “known”

Key fact we need: When we mark a vertex “known” we won’t discover a
shorter path later!

 This holds only because Dijkstra’s algorithm picks the node with the next shortest
path-so-far

* The proof is by contradiction...

Correctness: The Cloud (Rough Sketch)

Next shortest path from
inside the known cloud

Cloud of
Vertices

Better path
tov?

Source

e Suppose v is the next node to be marked known (next to add to “the cloud of known vertices”) -~
* The best-known path to v must have only nodes “in the cloud” A
— Else we would have picked a node closer to the cloud than v
* Suppose the actual shortest path to v is different
— It won’t use only cloud nodes, or we would know about it
— So it must use non-cloud nodes. Let w be the first non-cloud node on this path.
< — The part of the path up to w is already known and must be shorter than the best-known path to v.
— So v would not have been picked. Contradiction!

Efficiency, first approach v

Use pseudocode to determine asymptotic run-time
* Notice each edge is processed only once
dijkstra (Graph G, Node start) ({

for each node: x.cost=infinity, x.known=false
start.cost = 0

€|

Fo(vl)

~— while(not all nodes are known) { » \?-
C{UF\ — > b = find unknown node with smallest cost <> Vv

b.known = true
for each edge (b,a) in G
if(!'a.known)
if(b.cost + weight((b,a)) < a.cost) {
a.cost = b.cost + weight ((b,a))
a.path = b
} ~

Improving asymptotic running time

* So far: O(|V]?)

* We had a similar “problem” with topological sort being O(|V|?) due to
each iteration looking for the node to process next

* We solved it with a queue of zero-degree nodes
* But here we need the lowest-cost node and costs can change as we process edges

* Solution? L
« A oyrterct Twawl_ holding all unknown nodes, so -t / cost

e But must support Jer ¢ afe \CQZ operation

* Must maintain a reference from each node to its current position in the priority queue

* Conceptually simple, but can be a pain to code up

o ~ OUN;Q
Efficiency, second approach Ao "y s

Use pseudocode to determine asymptotic run-time

dijkstra (Graph G, Node start) ({
for each node: x.cost=infinity, x.knownfalse} O C]\/' >
start.cost = 0
build-heap with all nodes

hile (h ' t empty) {
i ; _ diiitéhsdii(z) o }Q(\v[M@\v\)

b.known = true
for each edge (b,a) in G

if (!a.known)
if(b.cost + weight((b,a)) < a.cost) { O <\/E\)(06|VK>
¥ decreaseKey (a, "'new cost - old cost”)

a.path = b

| (gl el gl

Dense vs. Sparse (again!)

* First approach: O(|V|?)
e Second approach: O(|V|log|V|+|E|log]|V])

* So which is better?

e Dex or. O(|V|log|V|+|E|log|V]) (if |E| > |V], thenit’s O(|E|log|V]))
@.'}, e? O(|V]?)

* But, remember these are worst-case and asymptotic

* Priority queue might have slightly worse constant factors
* On the other hand, for “normal graphs”, we might call decreaseKey rarely

(or not percolate far), making |E|log|V| more like |E|
— -

Preserving Abstractions

A software-design interlude from Graphs

_— Vs 4R’ srueture s
Memory “under the hood”: Stack Space and Iéleap Space

Code
int x; Date today = new Date(2017,7,31) Class Date {
int x = 2; Date tomorrow = today; int year;
int v = x; tomorrow.addDate () ; int month;
y = 4; Z return today.getMonth(); |- g int day;
return x; j }
COMPUTER MEMORY
Stack Space Heap Space
x @ l unt
. Yl e |
1Ak N
R4 | ol VT

Dty today

DM ’Eow\o\/”(’\)

Abstractions

The key idea of code
* Clients do not know how it is implemented
* Clients do not need to know

* Clients cannot “break the abstraction”
no matter what they do

Abstraction: Separation of Clients and Implementation

Data Structure Code:

Data Structure Client: Priority Queue
“not trusted by ADT Example: * Should document how
implementer” new PO () operations can be used and
what is checked (raising
insert (..) appropriate exceptions)
e Can perform any
sequence of ADT deleteMin (..) * If used correctly, correct
operations | priority queue for any client
1sEmpty ()

* Can do anything type- in this example

checker allows on any

accessible objects * Client “cannot see” the

implementation

* e.g. binary min heap

Our example S

. // some private fields (year, month, day)
int getYear () {..}
void setYear (int y) {..}

. // more methods

* A priority queue with to-
do items, so earlier dates |,
“come first” ToDoTtem {

. // some private fields (date, description)
void setDate (Date d) {..}

e Exact method names and void setDescription(String d) {..}
. . .. // more methods
behavior not essential to }
example ToDOPQ {

. // some private fields (array, size, ..)
ToDoPQ () {..}

void insert (ToDoItem t) {..}

ToDoItem deleteMin () {..}

boolean isEmpty () {..}

What’s the mistake?

{r\\lp;kl./ .
A
)

ToDoPQ {
.. // other fields
public ToDolItem[] heap;
ToDoPQ () (..}
void insert (ToDoItem t)

//
pa =
pg.heap =
pg.insert (..);

client:
new ToDoPQ() ;
null;

{..

// What will likely happen here?

—

}

/
/R\61/\~

P 2

Today’s lecture: private does not solve all your problems!

Upcoming pitfalls can occur even with all private fields

Less obvious mistakes

1G4

public class ToDoPQ {
.. // all private fields
public ToDoPQ () ({..}
void insert (ToDoItem 1) {..}

}

// client:

ToDoPQ pg = new ToDoPQ() ;

// Make item with description “do a thing”
ToDoItem i = new ToDoItemf(..);
pa.insert (1) ;

i.setDescription (Yeat pie”);

pg.insert (i); // same object after update
x = deleteMin(); // x's description???

y = deleteMin(); // y’s description???]

Aliasing and mutation

Stack Space Heap Space

date:
»_description: “...”

ToDolItem 1

ToDoPQ pg

 Client was able to update something inside the abstraction because client
had an alias to it!

* |tis too hard to reason about and document what should happen, so better
software designs avoid the issue

Practice:

Mlsve ad (o 0@@‘7‘/

What year does x have? What happens on the last line?

n

L~ LA
2011 & T,fw“‘)\) Zo\S

N\

ToDoPQ pg = new ToDoPQ() ;

ToDoItem il = new ToDoItem(...)
ToDolItem 12 = new ToDoItemf(...)
pg.insert (il

; // year 2013
; // year 2014
) 7
pd.insert (12) ;
); // year 2015
n (

riT)setDate (
x = deleteMin(); // What year does x have?
v
AN
ToDoItem i3 = new ToDoItem(...);

pg.insert (i3); // year 2016
i3.setDate (null) ;

pg.insert (i4); // What happens here?

b<\\

ToDoItem i4 = new ToDoItem(..); // year 2017

N

throws exception.

Practice

Stack Space Heap Space

date:
description: “...”

ToDolItem 11

ToDoItem :\1
¢

date:
description

ToDoPQ pg

X ekytnd 2 6lS .

Practice

Stack Space Heap Space

date:
o ”

‘ S\ .
ToDoltem Wg description: “...

ToDoItem 77L

date:
description:/“...

ToDoPQ pg

The general fix

* Avoid aliases into the internal data (the “red arrows”) by

* Do not use the same objects inside and outside the abstraction because two
sides do not know all mutation (field-setting) that might occur

* A first attempt: ToDoPQ {

void insert (ToDoItem 1)
ToDoltem internal 1 =
new ToDoltem(i.date, 1i.description);
.. // use only the internal object

}

Stack Space

ToDoltem 1

ToDoPQ pg

Heap Space

date:
description:

" ”

ToDoIltem 1 = new ToDoItem QC“

pg = new ToDoPQ (
pg.insert (1) ;
i.setDescription (“
pg.insert (1) ;

x = deleteMin() ;
y = deleteMin (),

47K\accf Q«&

some different thing”);

<
a—

date:
description:

o ”

~\

PG ak\”,(-(,

Stack Space

ToDoltem 1

ToDoPQ pg

Heap Space

date:
description: “...”

Date d = new Date (..)
ToDoltem i1 = new ToDolItem(d,
pg = new ToDoPQ() ;
pPg.insert (i) ;

d.setYear (2015); &

“buy cake”);

date:
description: “...”

Deep copying

* For copying to work fully, usually need to also make copies of all objects referred
to (and that they refer to and so on...)

* All the way down to int, double, String, ..
 Called (versus our first attempt shallow-copy)

* Rule of thumb: Deep copy of things passed into abstraction

ToDoPQ {

volid insert (ToDoItem 1) {
ToDoltem internal 1 = é(//
ToDoltem(new Date(..),
i.description);é//
.. // use only the internal object

}

That was copy-in, now copy-out...

* So we have seen:
* Need to deep-copy data passed into abstractions to avoid pain and suffering

* Next:

* Need to deep-copy data passed out of abstractions to avoid pain and
suffering (unless data is “new” or no longer used in abstraction)

* Then:

* If objects are immutable (no way to update fields or things they refer to), then
copying unnecessary

Example: getMin

Stack Space

Heap Space

date:
description: “...”

ToDoltem x

ToDoPQ pg

ToDoItem 1 =

pa =
ToDoltem x =

new ToDoPQ () ;

x.setDate (..) ;

new ToDoItem(...);

pg.getMin () ;
// Uh oh!

public class ToDoPQ {
ToDolItem getMin () {
ToDoItem ans = heap[0];
return ans;

The fix: Copy-Out

* Just like we deep-copy objects from clients before adding to our data structure,
we should deep-copy parts of our data structure and return the copies to clients

e Copy-in and copy-out

ToDoPQ {

ToDoItem getMin () {

int ans = heap[0];
ToDoItem (Date (...),

ans.description) ;

What about deleteMin?

ToDoPQ { ,C\V\,L RS
ToDoItem deleteMin () { ig /
ToDoItem ans = heapl[0];

. // algorithm involving percolateDown
ans;

* Does not create a “red arrow” because object returned is no longer

part of the data structure
ket

* Returns an alias to object that was in the heap, but now it is not, so
conceptual “ownership” “transfers” to the client

Less copying: use immutability

* (Deep) copying is one solution to our aliasing problems

e Another solution is

* Make it so nobody can ever change an object or any other objects it
can refer to (deeply)

* Allows “red arrows”, but immutability makes them harmless

* InJava, a £inal field cannot be updated after an object is
constructed, so helps ensure immutability
* But final is a “shallow” idea and we need “deep” immutability
~shallow” id

This works

public class Date {
private final int year;
private final String month;
private final String day;

}
public class ToDoltem {
private fiinal Date date;
private final String description;
}
public class ToDoPQ {
void insert (ToDoltem i) {/*no copy-in needed!*/}
ToDoItem getMin () {/*no copy-out needed!*/}

Notes:
* String objects are immutable in Java
* (Using String formonth and day is not great style though)

This does *not™* work |

FASI
A g

\?//7

CQI«\§‘3 f*V\V\’B ’Q\N\ak

IOr\\/ C’\

| {

claw ﬁ\‘)

public class Date { Wue(AT (A

private final int year;

— = private Strlgg_mggﬁh // not final

e
p%%?gﬁg final String day;

} L((
public class ToDoltem ({ AV(MA&V\kHQQ
private final Date date;
private fTHST_§Ering description;
}
public class ToDoPQ ({
void insert (ToDoltem i) {/*no copy-in*/}
ToDoItem getMin () {/*no copy-out*/}

}

ke «

Client could mutate a Date’s month that is in our data structure

* So must do entire deep copy of ToDoItem

+ﬁAmJ¥Q

final is shallow

ToDoItem {
Date date;
String description;

* Here, final means no code can update the date or description
fields after the object is constructed

* So they will always refer to the same Date and String objects

* But what if those objects have their contents change?
e Cannot happen with String objects
* For Date objects, depends how we define Date

* So final is a “shallow” notion, but we can use it “all the way down” to

get deep immutabitity——

This works

* When deep-copying, can “stop”
when you get to immutable data

* Copying immutable data is
wasted work. Such unnecessary
copies is poor style

Date { // immutable
int year;
String month;
String day;

ToDoItem {
Date date;
String description;

ToDoPQ {
ToDoItem getMin () {
int ans = heap[0];

ToDoItem(ans.date, // okay!
ans.description) ;

o Vave, b\a\ﬂ“

- ane
What about this? v e

public class Date { // immutable

}
public class ToDoltem { // immutable (unlike last slide)

}
public class ToDoPQ ({

// a second constructor that uses

// Floyd’s algorithm

volid PriorityQueue (ToDoltem[] items) {
// what copying should we do?

To copy or not to copy?
* Array

C,or7

* ToDoItem object

Nt Gy

* Date object
/

N et Qpr7

Homework 4

* You are implementing a graph abstraction

* As provided, Vertex and Edge are immutable
* ButCollection<Vertex>and Collection<Edge> are not

* You might choose to add fields to Vertex or Edge that make them not
immutable

* Leads to more copy-in-copy-out, but that’s fine!

* Or you might leave them immutable and keep things like “best-path-cost-so-far”
in another dictionary (e.g., a HashMap)

There is more than one good design, but preserve your abstraction
* Great practice with a key concept in software design

Practice with Design Decisions QOF

Our three-eye-alien friend uncovered an impressively complete
and up-to-date family tree tracing all the way back to the ancient
emperor Qin Shi Huang. The alien wants to find a descendant of
this emperor who's still alive, and could use your advice!

(According to Wikipedia, Qin Shi Huang had ~50 children, wow!)

What data structure would you recommend? /A‘OC)AKC/LV\C7 Lost
Why? gfm“ 06(0\(’(’\ — ?ac@ AR it
,

-

What algorithm would you recommend? [>F S
Why? MO\V\7 CaerC—F gO(QA’ﬁ(CQV\g o\A—,\p{
M<6(/\ (o(‘o\v\c,(,\,;ﬂga Qp\C'fcr WAL N S BRES WOV\(G‘ L?—Q

VV\\’C(/\ S’(QW @V_OL "'66\(/& U’o nore g(]) ale.

