
Instructor:	Lilian	de	Greef
Quarter:	Summer	2017

CSE	373:	Data	Structures	and	Algorithms
Lecture	17:	Finish	Dijkstra’s	Algorithm,

Preserving	Abstractions	(Software	Design),	Spanning	Trees

Today

• Wrap	up	Dijkstra’s	algorithm
• Software	Design:	Preserving	Abstraction
• Introduce	Minimum	Spanning	Trees

Dijkstra’s	Algorithm	(Pseudocode)
Dijkstra’s	Algorithm – the	following	algorithm	for	finding	all	the	single-source	
shortest	paths	from	one	particular	source	vertex,	in	a	weighted	graph	(directed	or	
undirected)	with	no	negative-weight	edges:

1. For	each	node	v,		set		v.cost = ¥ and v.known = false
2. Set	source.cost = 0
3. While	there	are	unknown	nodes	in	the	graph

a) Select	the	unknown	node	v with	lowest	cost
b) Mark	v as	known
c) For	each	edge	(v,u) with	weight	w,

c1 = v.cost + w //	cost	of	best	path	through	v to	u
c2 = u.cost //	cost	of	best	path	to	u previously	known
if(c1 < c2){ //	if	the	path	through	v is	better
u.cost = c1
u.path = v //	for	computing	actual	paths

}

Correctness:	Intuition

Rough	intuition:	

All	the	“known”	vertices	have	the	correct	shortest	path
• True	initially:	shortest	path	to	start	node	has	cost	0
• If	it	stays	true	every	time	we	mark	a	node	“known”,	then	by	induction	this	holds	and	
eventually	everything	is	“known”

Key	fact	we	need:	When	we	mark	a	vertex	“known”	we	won’t	discover	a	
shorter	path	later!
• This	holds	only	because	Dijkstra’s algorithm	picks	the	node	with	the	next	shortest	
path-so-far

• The	proof	is	by	contradiction…

Correctness:	The	Cloud	(Rough	Sketch)

• Suppose	v is	the	next	node	to	be	marked	known	(next	to	add	to	“the	cloud	of	known	vertices”)
• The	best-known	path	to	vmust	have	only	nodes	“in	the	cloud”

– Else	we	would	have	picked	a	node	closer	to	the	cloud	than	v
• Suppose	the	actual	shortest	path to	v is	different

– It	won’t	use	only	cloud	nodes,	or	we	would	know	about	it
– So	it	must	use	non-cloud	nodes.		Let	w be	the	first non-cloud	node	on	this	path.		
– The	part	of	the	path	up	to	w is	already	known	and	must	be	shorter	than	the	best-known	path	to	v.		
– So	v	would	not	have	been	picked.		Contradiction!

The Cloud of
Known Vertices

Next	shortest	path	from	
inside	the	known	cloudv

Better	path	
to	v?		

Source

w

Efficiency,	first	approach

Use	pseudocode to	determine	asymptotic	run-time
• Notice	each	edge	is	processed	only	once

dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0
while(not all nodes are known) {

b = find unknown node with smallest cost
b.known = true
for each edge (b,a) in G
if(!a.known)

if(b.cost + weight((b,a)) < a.cost){
a.cost = b.cost + weight((b,a))
a.path = b

}
}

Improving	asymptotic	running	time

• So	far:	O(|V|2)

• We	had	a	similar	“problem”	with	topological	sort	being	O(|V|2)	due	to	
each	iteration	looking	for	the	node	to	process	next
• We	solved	it	with	a	queue	of	zero-degree	nodes
• But	here	we	need	the	lowest-cost	node	and	costs	can	change	as	we	process	edges

• Solution?
• A	 holding	all	unknown	nodes,	
• But	must	support	 operation

• Must	maintain	a	reference	from	each	node	to	its	current	position	in	the	priority	queue
• Conceptually	simple,	but	can	be	a	pain	to	code	up

Efficiency,	second	approach
Use	pseudocode to	determine	asymptotic	run-time

dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0
build-heap with all nodes
while(heap is not empty) {

b = deleteMin()
b.known = true
for each edge (b,a) in G
if(!a.known)
if(b.cost + weight((b,a)) < a.cost){

decreaseKey(a,“new cost – old cost”)
a.path = b

}
}

Dense	vs.	Sparse	(again!)

• First	approach:	O(|V|2)

• Second	approach:	O(|V|log|V|+|E|log|V|)

• So	which	is	better?
• Dense	or	Sparse?			O(|V|log|V|+|E|log|V|)					(if	|E|	>	|V|,	then	it’s	O(|E|log|V|))
• Dense	or	Sparse?			O(|V|2)

• But,	remember	these	are	worst-case	and	asymptotic
• Priority	queue	might	have	slightly	worse	constant	factors
• On	the	other	hand,	for	“normal	graphs”,	we	might	call	decreaseKey rarely	
(or	not	percolate	far),	making	|E|log|V|	more	like	|E|

Preserving	Abstractions
A	software-design	interlude	from	Graphs

Memory	“under	the	hood”:	Stack	Space	and	Heap	Space

Stack	Space Heap	Space

Code

COMPUTER	MEMORY

int x;
int x = 2;
int y = x;
y = 4;
return x;

Date today = new Date(2017,7,31)
Date tomorrow = today;
tomorrow.addDate();
return today.getMonth();

Class Date {
int year;
int month;
int day;

}

Abstractions

The	key	idea	of	code	abstraction:
•Clients	do	not	know	how	it	is	implemented
•Clients	do	not	need to	know
•Clients	cannot	“break	the	abstraction”	
no	matter	what	they	do

Abstraction:	Separation	of	Clients	and	Implementation

Data	Structure	Client:
“not	trusted	by	ADT	
implementer”

• Can	perform	any	
sequence	of	ADT	
operations
• Can	do	anything	type-
checker	allows	on	any	
accessible	objects

Priority Queue
Example:

new PQ(…)

insert(…)

deleteMin(…)

isEmpty()

Data	Structure	Code:
• Should	document	how	
operations	can	be	used	and	
what	is	checked	(raising	
appropriate	exceptions)

• If	used	correctly,	correct	
priority	queue	for	any	client	
in	this	example

• Client	“cannot	see”	the	
implementation	
• e.g.	binary	min	heap

Our	example

• A	priority	queue	with	to-
do	items,	so	earlier	dates	
“come	first”

• Exact	method	names	and	
behavior	not	essential	to	
example

public class Date {
… // some private fields (year, month, day)
public int getYear() {…}
public void setYear(int y) {…}
… // more methods

}
public class ToDoItem {

… // some private fields (date, description)
public void setDate(Date d) {…}
public void setDescription(String d) {…}
… // more methods

}
public class ToDoPQ {

… // some private fields (array, size, …)
public ToDoPQ() {…}
void insert(ToDoItem t) {…}
ToDoItem deleteMin() {…}
boolean isEmpty() {…}

}

What’s	the	mistake?

Today’s	lecture:	private does	not	solve	all	your	problems!
Upcoming	pitfalls	can	occur	even	with	all	private fields

public class ToDoPQ {
… // other fields
public ToDoItem[] heap;
public ToDoPQ() {…}
void insert(ToDoItem t) {…}
…

}
// client:
pq = new ToDoPQ();
pq.heap = null;
pq.insert(…); // What will likely happen here?

Less	obvious	mistakes
public class ToDoPQ {

… // all private fields
public ToDoPQ() {…}
void insert(ToDoItem i) {…}
…

}

// client:
ToDoPQ pq = new ToDoPQ();
// Make item with description “do a thing”
ToDoItem i = new ToDoItem(…);
pq.insert(i);
i.setDescription(“eat pie”);
pq.insert(i); // same object after update
x = deleteMin(); // x’s description???
y = deleteMin(); // y’s description???

Aliasing	and	mutation

• Client	was	able	to	update	something	inside	the	abstraction	because	client	
had	an	alias	to	it!
• It	is	too	hard	to	reason	about	and	document	what	should	happen,	so	better	
software	designs	avoid	the	issue

ToDoPQ pq
heap:

size:	1
…

date:	
description:	“…”

year:	…
month:	…

…

ToDoItem i

Stack	Space Heap	Space

A) 2014,	
inserts	item	for	2017.

B) 2015,	
inserts	item	for	2017.

C) 2014,	
throws	exception.

D) 2015,	
throws	exception.

ToDoPQ pq = new ToDoPQ();
ToDoItem i1 = new ToDoItem(…); // year 2013
ToDoItem i2 = new ToDoItem(…); // year 2014
pq.insert(i1);
pq.insert(i2);
i1.setDate(…); // year 2015
x = deleteMin(); // What year does x have?

ToDoItem i3 = new ToDoItem(…);
pq.insert(i3); // year 2016
i3.setDate(null);
ToDoItem i4 = new ToDoItem(…); // year 2017
pq.insert(i4); // What happens here?

Practice:	
What	year	does	x	have?		What	happens	on	the	last	line?

Practice

heap:
size:	2

…

date:	
description:	“…”

year:	…
month:	…

…

date:	
description:	“…”

year:	…
month:	…

…

Stack	Space Heap	Space

ToDoPQ pq

ToDoItem

ToDoItem

Practice

heap:
size:	2

…

date:	
description:	“…”

year:	…
month:	…

…

date:	
description:	“…”

year:	…
month:	…

…

Stack	Space Heap	Space

ToDoPQ pq

ToDoItem

ToDoItem

The	general	fix

• Avoid	aliases	into	the	internal	data	(the	“red	arrows”)	by	copying	objects	as	needed
• Do	not	use	the	same	objects	inside	and	outside	the	abstraction	because	two	
sides	do	not	know	all	mutation	(field-setting)	that	might	occur
• “Copy-in-copy-out”

• A	first	attempt: public class ToDoPQ {
…
void insert(ToDoItem i) {
ToDoItem internal_i =
new ToDoItem(i.date, i.description);

… // use only the internal object
}

}

ToDoItem i = new ToDoItem(…);
pq = new ToDoPQ();
pq.insert(i);
i.setDescription(“some different thing”);
pq.insert(i);
x = deleteMin();
y = deleteMin();

heap:
size:	1

…

date:	
description:	“…”

date:	
description:	“…”

year:	…
month:	…

…

Stack	Space Heap	Space

ToDoPQ pq

ToDoItem i

heap:
size:	1

…

date:	
description:	“…”

date:	
description:	“…”

year:	…
month:	…

…

Stack	Space Heap	Space

ToDoPQ pq

ToDoItem i

Date d = new Date(…)
ToDoItem i = new ToDoItem(d, “buy cake”);
pq = new ToDoPQ();
pq.insert(i);
d.setYear(2015);
…

Deep	copying

• For	copying	to	work	fully,	usually	need	to	also	make	copies	of	all	objects	referred	
to	(and	that	they	refer	to	and	so	on…)
• All	the	way	down	to	int,	double,	String,	…
• Called deep	copying (versus	our	first	attempt	shallow-copy)

• Rule	of	thumb:	Deep	copy	of	things	passed	into	abstraction

public class ToDoPQ {
…
void insert(ToDoItem i) {
ToDoItem internal_i =
new ToDoItem(new Date(…),

i.description);
… // use only the internal object

}
}

That	was	copy-in,	now	copy-out…

• So	we	have	seen:
• Need	to	deep-copy	data	passed	into	abstractions	to	avoid	pain	and	suffering

• Next:
• Need	to	deep-copy	data	passed	out	of	abstractions	to	avoid	pain	and	
suffering	(unless	data	is	“new”	or	no	longer	used	in	abstraction)

• Then:
• If	objects	are	immutable	(no	way	to	update	fields	or	things	they	refer	to),	then	
copying	unnecessary

public class ToDoPQ {
ToDoItem getMin() {
ToDoItem ans = heap[0];

return ans;
}

}

heap:
size:	1

…

date:	
description:	“…”

year:	…
month:	…

…

ToDoItem i = new ToDoItem(…);
pq = new ToDoPQ();
ToDoItem x = pq.getMin();
x.setDate(…); // Uh oh!

Stack	Space Heap	Space

ToDoPQ pq

ToDoItem x

Example:	getMin

The	fix:	Copy-Out

• Just	like	we	deep-copy	objects	from	clients	before	adding	to	our	data	structure,	
we	should	deep-copy	parts	of	our	data	structure	and	return	the	copies	to	clients

• Copy-in	and copy-out

public class ToDoPQ {
ToDoItem getMin() {

int ans = heap[0];
return new ToDoItem(new Date(…),

ans.description);
}

}

What	about	deleteMin?

• Does	not	create	a	“red	arrow”	because	object	returned	is	no	longer	
part	of	the	data	structure

• Returns	an	alias	to	object	that	was	in	the	heap,	but	now	it	is	not,	so	
conceptual	“ownership”	“transfers”	to	the	client

public class ToDoPQ {
…
ToDoItem deleteMin() {

ToDoItem ans = heap[0];
… // algorithm involving percolateDown
return ans;

}

Less	copying:	use	immutability

• (Deep)	copying	is	one	solution	to	our	aliasing	problems

• Another	solution	is	immutability
• Make	it	so	nobody	can	ever	change	an	object	or	any	other	objects	it	
can	refer	to	(deeply)
• Allows	“red	arrows”,	but	immutability	makes	them	harmless

• In	Java,	a	final field	cannot	be	updated	after	an	object	is	
constructed,	so	helps	ensure	immutability
• But	final is	a	“shallow”	idea	and	we	need	“deep”	immutability

This	works
public class Date {

private final int year;
private final String month;
private final String day;

}
public class ToDoItem {

private final Date date;
private final String description;

}
public class ToDoPQ {

void insert(ToDoItem i){/*no copy-in needed!*/}
ToDoItem getMin(){/*no copy-out needed!*/}
…

}

Notes:
• String objects	are	immutable	in	Java
• (Using	String for	month and	day is	not	great	style	though)

This	does	*not*	work
public class Date {

private final int year;
private String month; // not final
private final String day;
…

}
public class ToDoItem {

private final Date date;
private final String description;

}
public class ToDoPQ {

void insert(ToDoItem i){/*no copy-in*/}
ToDoItem getMin(){/*no copy-out*/}
…

}

Client	could	mutate	a	Date’s	month that	is	in	our	data	structure
• So	must	do	entire	deep	copy	of	ToDoItem

final is	shallow

• Here,	final means	no	code	can	update	the	date or	description
fields	after	the	object	is	constructed

• So	they	will	always	refer	to	the	same	Date and	String objects

• But	what	if	those	objects	have	their contents	change?
• Cannot	happen	with	String objects
• For	Date objects,	depends	how	we	define	Date

• So final is	a	“shallow”	notion,	but	we	can	use	it	“all	the	way	down”	to	
get	deep	immutability

public class ToDoItem {
private final Date date;
private final String description;

}

This	works
• When	deep-copying,	can	“stop”	
when	you	get	to	immutable	data

• Copying	immutable	data	is	
wasted	work.	Such	unnecessary	
copies	is	poor	style

public class Date { // immutable
private final int year;
private final String month;
private final String day;
…

}
public class ToDoItem {

private Date date;
private String description;

}
public class ToDoPQ {

ToDoItem getMin(){
int ans = heap[0];
return new ToDoItem(ans.date, // okay!

ans.description);
}

}

What	about	this?

public class Date { // immutable
…

}
public class ToDoItem { // immutable (unlike last slide)

…
}
public class ToDoPQ {
// a second constructor that uses
// Floyd’s algorithm
void PriorityQueue(ToDoItem[] items) {

// what copying should we do?
…

}
}

To	copy	or	not	to	copy?
• Array

• ToDoItem object

• Date object

Homework	4

• You	are	implementing	a	graph	abstraction

• As	provided,	Vertex and	Edge are	immutable
• But	Collection<Vertex> and	Collection<Edge> are	not

• You	might	choose	to	add	fields	to	Vertex or	Edge that	make	them	not	
immutable
• Leads	to	more	copy-in-copy-out,	but	that’s	fine!

• Or you	might	leave	them	immutable	and	keep	things	like	“best-path-cost-so-far”	
in	another	dictionary	(e.g.,	a	HashMap)

There	is	more	than	one	good	design,	but	preserve	your	abstraction
• Great	practice	with	a	key	concept	in	software	design

Practice	with	Design	Decisions
Our	three-eye-alien	friend	uncovered	an	impressively	complete	
and	up-to-date	family	tree	tracing	all	the	way	back	to	the	ancient	
emperor	Qin	Shi	Huang.	The	alien	wants	to	find	a	descendant	of	
this	emperor	who’s	still	alive,	and	could	use	your	advice!
(According	to	Wikipedia,	Qin	Shi	Huang	had	~50	children,	wow!)

What	data	structure	would	you	recommend?	
Why?

What	algorithm	would	you	recommend?	
Why?

