CSE 373: Data Structures and Algorithms Lecture 16: Dijkstra’s Algorithm (Graphs)

Instructor: Lilian de Greef
Quarter: Summer 2017

Today

- Announcements
- Graph Traversals Continued
- Remarks on DFS \& BFS
- Shortest paths for weighted graphs: Dijkstra's Algorithm!

Announcements:

Homework 4 is out!

- Due next Friday (August $4^{\text {th }}$) at 5:00pm
- May choose to pair-program if you like!
- Same cautions as last time apply: choose partners and when to start working wisely!
- Can almost entirely complete using material by end of this lecture
- Will discuss some software-design concepts next week to help you prevent some (potentially non-obvious) bugs

Another midterm correction... ($\because \&)$

1. True or False: (6 points)

Circle whether the statement is either true or false.
f. (true false): In an AVL tree, the longest and shortest paths (i.e. number of edges) from the root to a leaf do not differ by more than one.

I will have the final exam quadruple-checked to avoid these situations!

Graphs: Traversals Continued
And introducing Dijkstra's Algorithm for shortest paths!

Graph Traversals: Recap \& Running Time

- Traversals: General Idea
- Starting from one vertex, repeatedly explore adjacent vertices
- Mark each vertex we visit, so we don't process each more than once (cycles!)

- Important Graph Traversal Algorithms:

	Depth First Search (DFS)	Breadth First Search (BFS)
Explore...	as far as possible before backtracking	all neighbors first before next level of neighbors
Choose next vertex using...	recursion or a stack	a queue

- Assuming "choose next vertex" is $O(1)$, entire traversal is
- Use graph represented with adjacency

Comparison (useful for Design Decisions!)

- Which one finds shortest paths?
- i.e. which is better for "what is the shortest path from \mathbf{x} to \mathbf{y} " when there's more than one possible path?
- Which one can use less space in finding a path?
- A third approach:
- Iterative deepening (IDFS):
- Try DFS but disallow recursion more than K levels deep
- If that fails, increment K and start the entire search over
- Like BFS, finds shortest paths. Like DFS, less space.

Graph Traversal Uses

In addition to finding paths, we can use graph traversals to answer:

- What are all the vertices reachable from a starting vertex?
- Is an undirected graph connected?
- Is a directed graph strongly connected?
- But what if we want to actually output the path?
- How to do it:
- Instead of just "marking" a node, store the previous node along the path
- When you reach the goal, follow path fields back to where you started (and then reverse the answer)
- If just wanted path length, could put the integer distance at each node instead once

Single source shortest paths

- Done: BFS to find the minimum path length from \mathbf{v} to \mathbf{u} in $O(|\mathrm{E}|+|\mathrm{V}|)$
- Actually, can find the minimum path length from \mathbf{v} to every node
- Still $O(|\mathrm{E}|+|\mathrm{V}|)$
- No faster way for a "distinguished" destination in the worst-case
- Now: Weighted graphs

Given a weighted graph and node \mathbf{v}, find the minimum-cost path from v to every node

- As before, asymptotically no harder than for one destination

A Few Applications of Shortest Weighted Path

- Driving directions
- Cheap flight itineraries
- Network routing
- Critical paths in project management

Not as easy as BFS

Why BFS won't work: Shortest path may not have the fewest edges

- Annoying when this happens with costs of flights

We will assume there are no negative weights

- Problem is ill-defined if there are negative-cost cycles
- Today's algorithm is wrong if edges can be negative
- There are other, slower (but not terrible) algorithms

Algorithm: General Idea

Goal: From one starting vertex, what are the shortest paths to each of the other vertices (for a weighted graph)?

Idea: Similar to BFS

- Repeatedly increase a "set of vertices with known shortest distances"
- Any vertex not in this set will have a "best distance so far"
- Each vertex has a "cost" to represent these shortest/best distances
- Update costs (i.e. "best distances so far") as we add vertices to set

Shortest Path Example \#1

Known Set (in order added):

vertex	known?	cost	path
A			
B			
C			
D			
E			
F			
G			
H			

(extra space in case you want/need it)

This is called... Dijkstra's Algorithm

Named after its inventor Edsger Dijkstra (1930-2002)
Truly one of the "founders" of computer science; this is just one of his many contributions

Dijkstra's Algorithm (Pseudocode)

Dijkstra's Algorithm - the following algorithm for finding single-source shortest paths in a weighted graph (directed or undirected) with no negative-weight edges:

1. For each node v, set $v . \operatorname{cost}=\infty$ and v.known $=$ false
2. Set source.cost $=0$
3. While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost
b) Mark vas known
c) For each edge ($v, u)$ with weight w,
$\mathrm{c} 1=\mathrm{v} \cdot \mathrm{cost}+\mathrm{w} / /$ cost of best path through v to u
$\mathrm{c} 2=\mathrm{u}$. cost $/ /$ cost of best path to u previously known
if $(c 1<c 2)$ \{ // if the path through vis better
u.cost $=c 1$
u.path $=\mathrm{v}$ // for computing actual paths
\}

Dijkstra's Algorithm: Features

- When a vertex is marked known, the cost of the shortest path to that node is known
- The path is also known by following back-pointers
- While a vertex is still not known, another shorter path to it *might* still be found

Note: The "Order Added to Known Set" is not important

- A detail about how the algorithm works (client doesn't care)
- Not used by the algorithm (implementation doesn't care)
- It is sorted by path-cost, resolving ties in some way
- Helps give intuition of why the algorithm works

Dijkstra's Algorithm: Commentary

Dijkstra's Algorithm is one example of...

- A greedy algorithm:
- Make a locally optimal choice at each stage to (hopefully) find a global optimum
- i.e. Settle on the best looking option at each repeated step
- Note: for some problems, greedy algorithms cannot find best answer!
- Dynamic programming:

vertex	known?	cost	path
A	Y	0	
B	Y	2	A
C	Y	1	A
D	Y	4	A
E	Y	11	G
F	Y	4	B
G	Y	8	H
H	Y	7	F

- Solve a complex problem by breaking it down into a collection of simpler subproblems, solve each of those subproblems just once, and store their solutions.
- i.e. Save partial solutions, and use it to solve further parts to avoid repeating work

Dijkstra's Algorithm: Practice Time!

An order of adding vertices to the known set:
A) A, D, C, E, F, B, G
B) A, D, C, E, B, F, G
C) A, D, E, C, B, G, F
D) A, D, E, C, B, F, G

vertex	known?	cost	path
A			
B			
C			
D			
E			
F			
G			

(space for scratch work)

Dijkstra's Algorithm: Practice Time!

An order of adding vertices to the known set:
A) A, D, C, E, F, B, G
B) A, D, C, E, B, F, G
C) A, D, E, C, B, G, F
D) A, D, E, C, B, F, G

vertex	known?	cost	path
A			
B			
C			
D			
E			
F			
G			

Dijkstra's Algorithm: Practice Time!

An order of adding vertices to the known set:
A) A, D, C, E, F, B, G
B) A, D, C, E, B, F, G
C) A, D, E, C, B, G, F
D) A, D, E, C, B, F, G

vertex	known?	cost	path
A	Y	0	
B		≤ 6	D
C		≤ 2	A
D	Y	1	A
E		≤ 2	D
F		≤ 7	D
G		≤ 6	D

Example \#3

- How will the "best-cost-so-far" for Y proceed?
- Is this expensive?

Where are We?

- Had a problem: Compute shortest paths in a weighted graph with no negative weights
- Learned an algorithm: Dijkstra's algorithm
- What should we do after learning an algorithm?
- Prove it is correct
- Not obvious!
- We will sketch the key ideas
- Analyze its efficiency
- Will do better by using a data structure we learned earlier!

Correctness: Intuition

Rough intuition:
All the "known" vertices have the correct shortest path

- True initially: shortest path to start node has cost 0
- If it stays true every time we mark a node "known", then by induction this holds and eventually everything is "known"

Key fact we need: When we mark a vertex "known" we won't discover a shorter path later!

- This holds only because Dijkstra's algorithm picks the node with the next shortest path-so-far
- The proof is by contradiction...

Correctness: The Cloud (Rough Sketch)

- Suppose v is the next node to be marked known (next to add to "the cloud of known vertices")
- The best-known path to v must have only nodes "in the cloud"
- Else we would have picked a node closer to the cloud than v
- Suppose the actual shortest path to v is different
- It won't use only cloud nodes, or we would know about it
- So it must use non-cloud nodes. Let w be the first non-cloud node on this path.
- The part of the path up to w is already known and must be shorter than the best-known path to v.
- So v would not have been picked. Contradiction!

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

- Notice each edge is processed only once

```
dijkstra(Graph G, Node start) {
    start.cost = 0
    while(not all nodes are known) {
        b = find unknown node with smallest cost
        b.known = true
        for each edge (b,a) in G
        if(!a.known)
                if(b.cost + weight((b,a)) < a.cost){
                    a.cost = b.cost + weight((b,a))
                a.path = b
            }
}
```


Improving asymptotic running time

- So far: $O\left(|\mathrm{~V}|^{2}\right)$
- We had a similar "problem" with topological sort being $O\left(|\mathrm{~V}|^{2}\right)$ due to each iteration looking for the node to process next
- We solved it with a queue of zero-degree nodes
- But here we need the lowest-cost node and costs can change as we process edges
- Solution?
- A holding all unknown nodes,
- But must support operation
- Must maintain a reference from each node to its current position in the priority queue
- Conceptually simple, but can be a pain to code up

Efficiency, second approach

Use pseudocode to determine asymptotic run-time

```
dijkstra(Graph G, Node start) {
    for each node: x.cost=infinity, x.known=false
    start.cost = 0
    build-heap with all nodes
    while(heap is not empty) {
        b = deleteMin()
        b.known = true
        for each edge (b,a) in G
            if(!a.known)
                if(b.cost + weight((b,a)) < a.cost){
                    decreaseKey(a,"new cost - old cost")
                a.path = b
            }
}
```


Dense vs. Sparse (again!)

- First approach: $O\left(|\mathrm{~V}|^{2}\right)$
- Second approach: $O(|\mathrm{~V}| \log |\mathrm{V}|+|\mathrm{E}| \log |\mathrm{V}|)$
- So which is better?
- Dense or Sparse? $O(|\mathrm{~V}| \log |\mathrm{V}|+|\mathrm{E}| \log |\mathrm{V}|) \quad$ (if $|\mathrm{E}|>|\mathrm{V}|$, then it 's $O(|\mathrm{E}| \log |\mathrm{V}|))$
- Dense or Sparse? $O\left(|\mathrm{~V}|^{2}\right)$
- But, remember these are worst-case and asymptotic
- Priority queue might have slightly worse constant factors
- On the other hand, for "normal graphs", we might call decreaseKey rarely (or not percolate far), making $|\mathrm{E}| \log |\mathrm{V}|$ more like $|\mathrm{E}|$

Practice with Design Decisions ${ }^{\text {Graphs Edition! }}$

Our three-eye-alien friend uncovered an impressively complete and up-to-date family tree tracing all the way back to the ancient emperor Qin Shi Huang. The alien wants to find a descendant of this emperor who's still alive, and could use your advice!
(According to Wikipedia, Qin Shi Huang had ~50 children, wow!)

What data structure would you recommend? Why?

What algorithm would you recommend?
Why?
(extra space for notes)

