
Instructor:	Lilian	de	Greef
Quarter:	Summer	2017

CSE	373:	Data	Structures	and	Algorithms
Lecture	16:	Dijkstra’s	Algorithm	(Graphs)

Today

• Announcements
• Graph	Traversals	Continued
• Remarks	on	DFS	&	BFS
• Shortest	paths	for	weighted	graphs:
Dijkstra’s	Algorithm!

Announcements:

Homework	4	is	out!

• Due	next	Friday	(August	4th)	at	5:00pm

• May	choose	to	pair-program	if	you	like!
• Same	cautions	as	last	time	apply:	choose	partners	and	when	to	start	working	wisely!

• Can	almost	entirely	complete	using	material	by	end	of	this	lecture

• Will	discuss	some	software-design	concepts	next	week	to	help	you	
prevent	some	(potentially	non-obvious)	bugs

I	will	have	the	final	exam	quadruple-checked to	avoid	these	situations!
(I	am	so	sorry)

Another	midterm	correction… (&)

Bring	your	midterm	to	*any*	
office	hours	to	get	your	point	
back.

Graphs:	Traversals	Continued
And	introducing	Dijkstra’s	Algorithm	for	shortest	paths!

Graph	Traversals:	Recap	&	Running	Time
• Traversals:	General	Idea

• Starting	from	one	vertex,	repeatedly	explore	adjacent	vertices
• Mark	each	vertex	we	visit,	so	we	don’t	process	each	more	than	once	(cycles!)

• Important	Graph	Traversal	Algorithms:

• Assuming	“choose	next	vertex”	is	O(1),	entire	traversal	is
• Use	graph	represented	with	adjacency

Depth	First	Search	(DFS) Breadth	First	Search	(BFS)

Explore… as	far	as	possible
before	backtracking

all	neighbors	first	
before next	level	of	neighbors

Choose	next	vertex	using… recursion	or	a	stack a	queue

Comparison	(useful	for	Design	Decisions!)

• Which	one	finds	shortest paths?
• i.e.	which	is	better	for	“what	is	the	shortest	path	from	x to	y”	
when	there’s	more	than	one	possible	path?

• Which	one	can	use	less	space	in	finding	a	path?

• A	third	approach:
• Iterative	deepening	(IDFS):	

• Try	DFS	but	disallow	recursion	more	than	K levels	deep
• If	that	fails,	increment	K and	start	the	entire	search	over

• Like	BFS,	finds	shortest	paths.		Like	DFS,	less	space.

Graph	Traversal	Uses

In	addition	to	finding	paths,	we	can	use	graph	traversals	to	answer:
• What	are	all	the	vertices	reachable from	a	starting	vertex?
• Is	an	undirected	graph	connected?
• Is	a	directed	graph	strongly	connected?

• But	what	if	we	want	to	actually	output	the	path?

• How	to	do	it:	
• Instead	of	just	“marking”	a	node,	store	the	previous	node	along	the	path	
• When	you	reach	the	goal,	follow	path fields	back	to	where	you	started	(and	then	
reverse	the	answer)

• If	just	wanted	path	length,	could	put	the	integer	distance	at	each	node	instead	once

Single	source	shortest	paths

• Done:	BFS	to	find	the	minimum	path	length	from	v to	u in	O(|E|+|V|)

• Actually,	can	find	the	minimum	path	length	from	v to	every	node
• Still	O(|E|+|V|)
• No	faster	way	for	a	“distinguished”	destination	in	the	worst-case

• Now:		Weighted	graphs	

Given	a	weighted	graph	and	node	v,	
find	the	minimum-cost	path	from	v to	every	node	

• As	before,	asymptotically	no	harder	than	for	one	destination

A	Few	Applications	of	Shortest	Weighted	Path

• Driving	directions

• Cheap	flight	itineraries

• Network	routing

• Critical	paths	in	project	management

Not	as	easy	as	BFS

Why	BFS	won’t	work:	Shortest	path	may	not	have	the	fewest	edges
• Annoying	when	this	happens	with	costs	of	flights

500

100
100 100

100

We	will	assume	there	are	no	negative	weights
• Problem is	ill-defined if	there	are	negative-cost	cycles
• Today’s algorithm is	wrong if	edges can	be	negative
– There	are	other,	slower	(but	not	terrible)	algorithms

7

10 5

-11

Algorithm:	General	Idea
Goal: From	one	starting	vertex,	what	are	the	shortest	paths	to	each	of	the	
other	vertices	(for	a	weighted	graph)?

Idea: Similar	to	BFS
• Repeatedly	increase	a	“set	of	vertices	with	known	shortest	distances”
• Any	vertex	not	in	this	set	will	have	a	“best	distance	so	far”
• Each	vertex	has	a	“cost”	to	represent	these	shortest/best	distances
• Update	costs	(i.e.	“best	distances	so	far”)	as	we	add	vertices	to	set

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1
9

2

4 5

Shortest	Path	Example	#1
vertex known? cost path

A

B

C

D

E

F

G

H

Known	Set	(in	order	added):

A B

D
C

F H

E

G

2 2 3

110 2
3

111

7

1

9

2

4 5

Example	#1
A B

D
C

F H

E

G

0 ∞ ∞ ∞

∞

∞

∞

∞

2 2 3

110 2
3

111

7

1
9
2

4

vertex known? cost path
A 0
B ??
C ??
D ??
E ??
F ??
G ??
H ??

5

Order	Added	to	Known	Set:

Example	#1
A B

D
C

F H

E

G

0 2 ∞ ∞

4

1

∞

∞

2 2 3

110 2
3

111

7

1
9
2

4

vertex known? cost path
A Y 0
B £ 2 A
C £ 1 A
D £ 4 A
E ??
F ??
G ??
H ??

5

Order	Added	to	Known	Set:

A

Example	#1
A B

D
C

F H

E

G

0 2 ∞ ∞

4

1

12

∞

2 2 3

110 2
3

111

7

1
9
2

4

vertex known? cost path
A Y 0
B £ 2 A
C Y 1 A
D £ 4 A
E £ 12 C
F ??
G ??
H ??

5

Order	Added	to	Known	Set:

A,	C

Example	#1
A B

D
C

F H

E

G

0 2 4 ∞

4

1

12

∞

2 2 3

110 2
3

111

7

1
9
2

4

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D £ 4 A
E £ 12 C
F £ 4 B
G ??
H ??

5

Order	Added	to	Known	Set:

A,	C,	B

Example	#1
A B

D
C

F H

E

G

0 2 4 ∞

4

1

12

∞

2 2 3

110 2
3

111

7

1
9
2

4

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E £ 12 C
F £ 4 B
G ??
H ??

5

Order	Added	to	Known	Set:

A,	C,	B,	D

Example	#1
A B

D
C

F H

E

G

0 2 4 7

4

1

12

∞

2 2 3

110 2
3

111

7

1
9
2

4

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E £ 12 C
F Y 4 B
G ??
H £ 7 F

5

Order	Added	to	Known	Set:

A,	C,	B,	D,	F

Example	#1
A B

D
C

F H

E

G

0 2 4 7

4

1

12

8

2 2 3

110 2
3

111

7

1
9
2

4

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E £ 12 C
F Y 4 B
G £ 8 H
H Y 7 F

5

Order	Added	to	Known	Set:

A,	C,	B,	D,	F,	H

Example	#1
A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2
3

111

7

1
9
2

4

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E £ 11 G
F Y 4 B
G Y 8 H
H Y 7 F

5

Order	Added	to	Known	Set:

A,	C,	B,	D,	F,	H,	G

Example	#1
A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2
3

111

7

1
9
2

4

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

5

Order	Added	to	Known	Set:

A,	C,	B,	D,	F,	H,	G,	E

This	is	called… Dijkstra’s	Algorithm

Named	after	its	inventor	Edsger Dijkstra (1930-2002)
Truly	one	of	the	“founders”	of	computer	science;
this	is	just	one	of	his	many	contributions

“Computer	science	is	no	more	about	computers	
than	astronomy	is	about	telescopes.”

- Edsger Dijkstra

Dijkstra’s	Algorithm	(Pseudocode)

Dijkstra’s	Algorithm – the	following	algorithm	for	finding	single-source	shortest	
paths	in	a	weighted	graph	(directed	or	undirected)	with	no	negative-weight	edges:

1. For	each	node	v,		set		v.cost = ¥ and v.known = false
2. Set	source.cost = 0
3. While	there	are	unknown	nodes	in	the	graph

a) Select	the	unknown	node	v with	lowest	cost
b) Mark	v as	known
c) For	each	edge	(v,u) with	weight	w,

c1 = v.cost + w //	cost	of	best	path	through	v to	u
c2 = u.cost //	cost	of	best	path	to	u previously	known
if(c1 < c2){ //	if	the	path	through	v is	better
u.cost = c1
u.path = v //	for	computing	actual	paths

}

Dijkstra’s	Algorithm:	Features

• When	a	vertex	is	marked	known,	the	cost	of	the	shortest	path	to	that	node	is	known
• The	path	is	also	known	by	following	back-pointers

• While	a	vertex	is	still	not	known,	another	shorter	path	to	it	*might* still	be	found

Note:	The	“Order	Added	to	Known	Set”	is	not	important
• A	detail	about	how	the	algorithm	works	(client	doesn’t	care)
• Not	used	by	the	algorithm	(implementation	doesn’t	care)
• It	is	sorted	by	path-cost,	resolving	ties	in	some	way

• Helps	give	intuition	of	why	the	algorithm	works

Dijkstra’s	Algorithm:	Commentary
Dijkstra’s	Algorithm	is	one	example	of...

• A	greedy	algorithm:
• Make	a	locally	optimal	choice	at	each	stage	to	(hopefully)	find	a	global	optimum
• i.e.	Settle	on	the	best	looking	option	at	each	repeated	step
• Note:	for	some	problems,	greedy	algorithms	cannot	find	best	answer!

• Dynamic	programming:
• Solve	a	complex	problem	by	breaking	it	down	into	a	collection	of	simpler	
subproblems,	solve	each	of	those	subproblems just	once,	and	store	their	solutions.

• i.e.	Save	partial	solutions,	and	use	it	to	solve	further	parts	to	avoid	repeating	work

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F

Dijkstra’s	Algorithm:	Practice	Time!

A B

C
D

F

E

G

2

1
2 5

1
1

1

2
6

5 3

10

vertex known? cost path

A

B

C

D

E

F

G

An	order	of	adding	vertices	to	the	known	set:
A) A,	D,	C,	E,	F,	B,	G
B) A,	D,	C,	E,	B,	F,	G
C) A,	D,	E,	C,	B,	G,	F
D) A,	D,	E,	C,	B,	F,	G

Dijkstra’s	Algorithm:	Practice	Time!

A B

C
D

F

E

G

2

1
2 5

1
1

1

2
6

5 3

10

vertex known? cost path

A Y 0

B £ 6 D

C £ 2 A

D Y 1 A

E £ 2 D

F £ 7 D

G £ 6 D

An	order	of	adding	vertices	to	the	known	set:
A) A,	D,	C,	E,	F,	B,	G
B) A,	D,	C,	E,	B,	F,	G
C) A,	D,	E,	C,	B,	G,	F
D) A,	D,	E,	C,	B,	F,	G

Example	#2
A B

C
D

F

E

G

0 ∞

∞

∞

∞
∞

∞

2

1
2

vertex known? cost path
A 0
B ??
C ??
D ??
E ??
F ??
G ??

5

1
1

1

2 6
5 3

10

Order	Added	to	Known	Set:

Example	#2
A B

C
D

F

E

G

0 ∞

∞

2

1
∞

∞

2

1
2

vertex known? cost path
A Y 0
B ??
C £ 2 A
D £ 1 A
E ??
F ??
G ??

5

1
1

1

2 6
5 3

10

Order	Added	to	Known	Set:

A

Example	#2
A B

C
D

F

E

G

0 6

7

2

1
2

6

2

1
2

vertex known? cost path
A Y 0
B £ 6 D
C £ 2 A
D Y 1 A
E £ 2 D
F £ 7 D
G £ 6 D

5

1
1

1

2 6
5 3

10

Order	Added	to	Known	Set:

A,	D

Example	#2
A B

C
D

F

E

G

0 6

4

2

1
2

6

2

1
2

vertex known? cost path
A Y 0
B £ 6 D
C Y 2 A
D Y 1 A
E £ 2 D
F £ 4 C
G £ 6 D

5

1
1

1

2 6
5 3

10

Order	Added	to	Known	Set:

A,	D,	C

Example	#2
A B

C
D

F

E

G

0 3

4

2

1
2

6

2

1
2

vertex known? cost path
A Y 0
B £ 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F £ 4 C
G £ 6 D

5

1
1

1

2 6
5 3

10

Order	Added	to	Known	Set:

A,	D,	C,	E

Example	#2
A B

C
D

F

E

G

0 3

4

2

1
2

6

2

1
2

vertex known? cost path
A Y 0
B Y 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F £ 4 C
G £ 6 D

5

1
1

1

2 6
5 3

10

Order	Added	to	Known	Set:

A,	D,	C,	E,	B

Example	#2
A B

C
D

F

E

G

0 3

4

2

1
2

6

2

1
2

vertex known? cost path
A Y 0
B Y 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F Y 4 C
G £ 6 D

5

1
1

1

2 6
5 3

10

Order	Added	to	Known	Set:

A,	D,	C,	E,	B,	F

Example	#2
A B

C
D

F

E

G

0 3

4

2

1
2

6

2

1
2

vertex known? cost path
A Y 0
B Y 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F Y 4 C
G Y 6 D

5

1
1

1

2 6
5 3

10

Order	Added	to	Known	Set:

A,	D,	C,	E,	B,	F,	G

Example	#3

• How	will	the	“best-cost-so-far”	for	Y	proceed?

• Is	this	expensive?

Y

X
1 1 1 1

90
80 70 60

10

.	.	.	 1

because	each	edge is	processed

Where	are	We?

• Had	a	problem:	Compute	shortest	paths	in	a	weighted	graph	with	no	
negative	weights

• Learned	an	algorithm:	Dijkstra’s algorithm

• What	should	we	do	after	learning	an	algorithm?
• Prove	it	is	correct

• Not	obvious!
• We	will	sketch	the	key	ideas

• Analyze	its	efficiency
• Will	do	better	by	using	a	data	structure	we	learned	earlier!

Correctness:	Intuition

Rough	intuition:	

All	the	“known”	vertices	have	the	correct	shortest	path
• True	initially:	shortest	path	to	start	node	has	cost	0
• If	it	stays	true	every	time	we	mark	a	node	“known”,	then	by	induction	this	holds	and	
eventually	everything	is	“known”

Key	fact	we	need:	When	we	mark	a	vertex	“known”	we	won’t	discover	a	
shorter	path	later!
• This	holds	only	because	Dijkstra’s algorithm	picks	the	node	with	the	next	shortest	
path-so-far

• The	proof	is	by	contradiction…

Correctness:	The	Cloud	(Rough	Sketch)

• Suppose	v is	the	next	node	to	be	marked	known	(next	to	add	to	“the	cloud	of	known	vertices”)
• The	best-known	path	to	vmust	have	only	nodes	“in	the	cloud”

– Else	we	would	have	picked	a	node	closer	to	the	cloud	than	v
• Suppose	the	actual	shortest	path to	v is	different

– It	won’t	use	only	cloud	nodes,	or	we	would	know	about	it
– So	it	must	use	non-cloud	nodes.		Let	w be	the	first non-cloud	node	on	this	path.		
– The	part	of	the	path	up	to	w is	already	known	and	must	be	shorter	than	the	best-known	path	to	v.		
– So	v	would	not	have	been	picked.		Contradiction!

The Cloud of
Known Vertices

Next	shortest	path	from	
inside	the	known	cloudv

Better	path	
to	v?		

Source

w

