
Instructor:	Lilian	de	Greef
Quarter:	Summer	2017

CSE	373:	Data	Structures	and	Algorithms
Lecture	15:	Graph	Data	Structures,	Topological	Sort,	

and	Traversals (DFS,	BFS)

Today:

• Announcements
• Graph	data	structures
• Topological	Sort
• Graph	Traversals
• Depth	First	Search	(DFS)
• Breadth	First	Search	(BFS)

Announcement:	Received	Course	Feedback

What’s	working	well:
• Walking	through	in-class	examples
• Posted,	printed,	and	annotated	slides
• Interactive	questions	&	in-class	partner	discussion

Things	to	address:
• Amount	to	write	on	printed	slides
• Why	using	polling	system	for	in-class	exercises
• Concern	about	not	getting	through	entire	slide	deck

0
5

10
15
20
25

Year	in	Program	this	Fall

0
10
20
30
40

Last	Time	Programmed	/	Taken	CS	Course

Represented	majors:
• Engineering
• Math
• Science
• Informatics
• Geology
• Spanish
• Asian	Language
• Pre-major
• And	more!

Wide	range	of	student	
backgrounds!
Hence,	using	a	range	of	
teaching	styles,	pauses,	etc.

Graph	Data	Structures
A	couple	of	different	ways	to	store	adjacencies	

What	is	the	Data	Structure?

• So	graphs	are	really	useful	for	lots	of	data	and	questions	
• For	example,	“what’s	the	lowest-cost	path	from	x	to	y”

• But	we	need	a	data	structure	that	represents	graphs

• The	“best	one”	can	depend	on:
• Properties	of	the	graph	(e.g.,	dense	versus	sparse)
• The	common	queries	(e.g.,	“is	(u,v) an	edge?”	versus	“what	are	the	neighbors	of	node	u?”)

• So	we’ll	discuss	the	two	standard	graph	representations
• Adjacency	Matrix and	Adjacency	List
• Different	trade-offs,	particularly	time	versus	space

Adjacency	Matrix

• Assign	each	node	a	number	from	0 to	|V|-1
• A	|V| x	|V|matrix	(i.e.,	2-D	array)	of	Booleans	(or	1	vs.	0)
• If	M is	the	matrix,	then	M[u][v] == true
means	there	is	an	edge	from	u to	v

B S

M

E

(0) (1)
(2)

(3)

0 1 2 3

0

1

2

3

Adjacency	Matrix	Properties

• Running	time	to:
• Get	a	vertex’s	out-edges:	
• Get	a	vertex’s	in-edges:	
• Decide	if	some	edge	exists:	
• Insert	an	edge:
• Delete	an	edge:	

• Space	requirements:

• Best	for	sparse	or	dense	graphs?

F F F F

T F T T

F F T T

F T T F

0 1 2 3

0

1

2

3

B S

M

E

(0)
(1)

(2)

(3)

Adjacency	Matrix	Properties

• How	will	the	adjacency	matrix	vary	for	an	undirected	graph?
• Undirected	will	be	symmetric	around	the	diagonal

• How	can	we	adapt	the	representation	for	weighted	graphs?
• Instead	of	a	Boolean,	store	a	number	in	each	cell
• Need	some	value	to	represent	‘not	an	edge’

• In	some situations,	0	or	-1	works

Adjacency	List

• Assign	each	node	a	number	from	0 to	|V|-1
• An	array	of	length	|V|	in	which	each	entry	stores	a	list	of	all	adjacent	
vertices	(e.g.,	linked	list)

B S

M

E

(0) (1)
(2)

(3)

0

1

2

3

Adjacency	List	Properties

• Running	time	to:
• Get	all	of	a	vertex’s	out-edges:	

where	d is	out-degree	of	vertex
• Get	all	of	a	vertex’s	in-edges:

(but	could	keep	a	second	adjacency	list	for	this!)
• Decide	if	some	edge	exists:	

where	d is	out-degree	of	source
• Insert	an	edge:	

(unless	you	need	to	check	if	it’s	there)
• Delete	an	edge:	

where	d is	out-degree	of	source

• Space	requirements: Best	for	sparse	or	dense	graphs?

0

1

2

3

0 3 /

/

3 /

1 2 /

2

B S

M

E

(0)
(1)

(2)

(3)

Algorithms

Okay,	we	can	represent	graphs

Now	we’ll	implement	some	useful	and	non-trivial	algorithms!
• Topological	Sort
• Shortest	Paths
• Related:	Determining	if	such	a	path	exists
• Depth	First	Search
• Breadth	First	Search

Graphs:	Topological	Sort
Ordering	vertices	in	a	DAG

Topological	Sort
Topological	sort: Given	a	DAG,	order	all	the	vertices	so	that	every	
vertex	comes	before	all	of	its	neighbors

One	example	output:

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Questions	and	comments

• Why	do	we	perform	topological	sorts	only	on	DAGs?

• Is	there	always	a	unique	answer?

• Do	some	DAGs	have	exactly	1	answer?

• Terminology:	A	DAG	represents	a	partial	order and	a	topological	sort	
produces	a	total	order that	is	consistent	with	it

0

1
3

2

4

A	few	of	its	uses

• Figuring	out	how	to	graduate

• Computing	an	order	in	which	to	recompute cells	in	a	spreadsheet

• Determining	an	order	to	compile	files	using	a	Makefile

• In	general,	taking	a	dependency	graph	and	finding	an	order	of	
execution	

A	First	Algorithm	for	Topological	Sort

1. Label	(“mark”)	each	vertex	with	its	in-degree
• Could	“write	in	a	field	in	the	vertex”
• Could	also	do	this	via	a	data	structure	(e.g.,	array)	on	the	side

2. While	there	are	vertices	not	yet	output:
a) Choose	a	vertex	v with	in-degree	of	0
b) Output	v and	conceptually remove	it	from	the	graph
c) For	each	vertex	u adjacent	to	v (i.e.	u such	that	(v,u)	in	E),	

decrement	the	in-degree of	u

Example Output:	

Node:										 126						142					143		 374						373		 410						413						415	 417						XYZ
Removed?
In-degree:	 0							 0										2										1										1					 1		 1						 1										1				 3

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Notice

• Needed	a	vertex	with	in-degree	0	to	start
• Will	always	have	at	least	1	because

• Ties	among	vertices	with	in-degrees	of	0	can	be	broken	arbitrarily
• Can	be	more	than	one	correct	answer,	by	definition,	depending	on	the	graph

Running	time?

•What	is	the	worst-case	running	time?
• Initialization	 (assuming	adjacency	list)
• Sum	of	all	find-new-vertex	 (because	each	O(|V|))
• Sum	of	all	decrements	 (assuming	adjacency	list)
• So	total	is	 – not	good	for	a	sparse	graph!

labelEachVertexWithItsInDegree();
for(i = 0; i < numVertices; i++){
v = findNewVertexOfDegreeZero();
put v next in output
for each u adjacent to v
u.indegree--;

}

Doing	better

The	trick	is	to	avoid	searching	for	a	zero-degree	node	every	time!
• Keep	the	“pending”	zero-degree	nodes	in	a	list,	stack,	queue,	bag,	table,	or	something
• Order	we	process	them	affects	output	but	not	correctness	or	efficiency,	
provided	that	add/remove	are	both	O(1)

Using	a	queue:

1. Label	each	vertex	with	its	in-degree,	enqueue 0-degree	nodes
2. While	queue	is	not	empty

a) v =	dequeue()
b) Output	v and	remove	it	from	the	graph
c) For	each	vertex	u adjacent	to	v (i.e.	u such	that	(v,u)	in	E),	decrement	the	in-degree	of	u,	

if	new	degree	is	0,	enqueue it

Example:	Topological	Sort	Using	Queues

The	trick	is	to	avoid	searching	for	a	zero-degree	node	every	time!

1. Label	each	vertex	with	its	in-degree,	enqueue 0-degree	nodes

2. While	queue	is	not	empty
a) v =	dequeue()

b) Output	v and	remove	it	from	the	graph

c) For	each	vertex	u adjacent	to	v (i.e.	u such	that	(v,u)	in	E),	
decrement	the	in-degree	of	u,	if	new	degree	is	0,	enqueue it

A

D

B
C

Node A B C D

Removed?

In-degree 0 1 1 2

Queue:

Output:

Running	time?

• What	is	the	worst-case	running	time?
• Initialization:	 (assuming	adjacency	list)
• Sum	of	all	enqueues and	dequeues:
• Sum	of	all	decrements:	 (assuming	adjacency	list)
• Total:	 – much	better	for	sparse	graph!

labelAllAndEnqueueZeros();
for(i=0; ctr < numVertices; ctr++){

v = dequeue();
put v next in output
for each u adjacent to v {
u.indegree--;
if(u.indegree==0)
enqueue(u);

}
}

Graph	Traversals
Depth- and	Breadth- First	Searches!

Introductory	Example:	Graph	Traversals

How	would	a	computer	systematically	find	a	path	through	the	maze?

A B C D E

F G H I J

K L M N O

Source

Destination

Note:	under	the	hood,	we’re	using	a	graph	to	represent	the	maze

A B C D E

F G H I J

K L M N O

Source

Destination

A B C D E

F G H I J

N OK L M

Source

Destination

In	graph	terminology:	find	a	path	(if	any)	from	one	vertex	to	another.

Find	a	path	(if	any)	from	one	vertex	to	another.

Idea:	Repeatedly	explore	and	keep	track	of	adjacent	vertices.	
Mark	each	vertex	we	visit,	so	we	don’t	process	each	more	than	once.

A B C D E

F G H I J

K L M N O

Source

Destination

Depth	First	Search	(DFS)

Depth	First	Search (DFS):	
Explore	as	far	as	possible	along	each	branch	before	backtracking

Repeatedly	explore	adjacent	vertices using	 or																
Mark	each	vertex	we	visit,	so	we	don’t	process	each	more	than	once.

Example	pseudocode: DFS(Node start) {
mark and process start
for each node u adjacent to start

if u is not marked
DFS(u)

}

Find	a	path	(if	any)	from	one	vertex	to	another.

Idea:	Repeatedly	explore	and	keep	track	of	adjacent	vertices.	
Mark	each	vertex	we	visit,	so	we	don’t	process	each	more	than	once.

A B C D E

F G H I J

K L M N O

Source

Destination

Breadth	First	Search	(BFS)
Breadth	First	Search (BFS):	
Explore	neighbors	first,	before	moving	to	the	next	level	of	neighbors.

Repeatedly	explore	adjacent	vertices using	
Mark	each	vertex	we	visit,	so	we	don’t	process	each	more	than	once.

Example	pseudocode:
BFS(Node start) {
initialize queue q and enqueue start
mark start as visited
while(q is not empty) {
next = q.dequeue() // and “process”
for each node u adjacent to next
if(u is not marked)
mark u and enqueue onto q

}
}

Practice	time!
What	is	one	possible	order	of	visiting	the	nodes	of	the	following	graph	
when	using	Breadth	First	Search	(BFS)?

A) MNOPQR

B) NQMPOR

M

R

N

Q

O

P

C)	QMNPRO

D)	QMNPOR

(space	for	scratch	work	/	notes)

Running	Time	and	Traversal	Order

• Assuming	add and	remove are	O(1),	entire	traversal	is
• Use	an	adjacency	list	representation

• The	order	we	traverse	depends	entirely	on	add and	remove
• For	DFS:
• For	BFS:

Comparison	(useful	for	Design	Decisions!)

• Which	one	finds	shortest paths?
• i.e.	which	is	better	for	“what	is	the	shortest	path	from	x to	y”	
when	there’s	more	than	one	possible	path?

• Which	one	can	use	less	space	in	finding	a	path?

• A	third	approach:
• Iterative	deepening	(IDFS):	

• Try	DFS	but	disallow	recursion	more	than	K levels	deep
• If	that	fails,	increment	K and	start	the	entire	search	over

• Like	BFS,	finds	shortest	paths.		Like	DFS,	less	space.

Graph	Traversal	Uses

In	addition	to	finding	paths,	we	can	use	graph	traversals	to	answer:
• What	are	all	the	vertices	reachable from	a	starting	vertex?
• Is	an	undirected	graph	connected?
• Is	a	directed	graph	strongly	connected?

• But	what	if	we	want	to	actually	output	the	path?

• How	to	do	it:	
• Instead	of	just	“marking”	a	node,	store	the	previous	node	along	the	path	
• When	you	reach	the	goal,	follow	path fields	back	to	where	you	started	(and	then	
reverse	the	answer)

• If	just	wanted	path	length,	could	put	the	integer	distance	at	each	node	instead	once

Saving	the	Path

• Our	graph	traversals	can	answer	the	reachability question:
• “Is	there	a	path	from	node	x	to	node	y?”

• But	what	if	we	want	to	actually	output	the	path?

• How	to	do	it:	
• Instead	of	just	“marking”	a	node,	store	the	previous	node	along	the	path	
• When	you	reach	the	goal,	follow	path fields	back	to	where	you	started	(and	
then	reverse	the	answer)
• If	just	wanted	path	length,	could	put	the	integer	distance	at	each	node	
instead

Source:	
https://xkcd.com/761/

