CSE 373: Data Structures and Algorithms

Lecture 15: Graph Data Structures, Topological Sort,
and Traversals (DFS, BFS)

Instructor: Lilian de Greef
Quarter: Summer 2017

Today:

* Announcements
* Graph data structures
* Topological Sort

* Graph Traversals
* Depth First Search (DFS)
* Breadth First Search (BFS)

Announcement: Received Course Feedback

What’s working well:

* Walking through in-class examples

* Posted, printed, and annotated slides

* Interactive questions & in-class partner discussion

Things to address:

 Amount to write on printed slides

* Why using polling system for in-class exercises

* Concern about not getting through entire slide deck

25

20

15

10

U

Freshman

Sophomore

Year in Program this Fall

Junior

Senior

5th year

Graduate
student

other

Last Time Programmed / Taken CS Course

40
35

30
25
20
15
10

5

0

Represented Majors

* Engineering

* Math

* Science

* Informatics

* Geology

* Spanish

* Asian Language
* Pre-major

* And more!

Graph Data Structures

A couple of different ways to store adjacencies

What is the Data Structure?

* So graphs are really useful for lots of data and questions
* For example, “what’s the lowest-cost path from x to y”

* But we need a data structure that represents graphs

* The “best one” can depend on:
* Properties of the graph (e.g., dense versus sparse)
* The common queries (e.g., “is (u, v) an edge?” versus “what are the neighbors of node u?”)

* So we’ll discuss the two standard graph representations
and
» Different trade-offs, particularly time versus space

Adjacency Matrix

e Assign each node a numberfromOto |V |-1 ¢

* A |V]| x | V| matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)

e [f Mis the matrix, thenM[u] [v] == true
means there is an edge from uto v

(2) s

(1) X

SRR

1
=
r
C
-

2
“
T
r
-

Adjacency Matrix Properties

1 2
* Running time to: F F F F
* Get a vertex’s out-edges: O ([4 {>
* Get a vertex’s in-edges: OC l v 13 l\/l 1 7T F T T
* Decide if some edge exists: (M) ({7 2| F F | T
* Insert an edge: () (l - - -
* Delete an edge: O (D

 Space requirements:
O (l\/lL> ¥ (2)

 Best for %e ord@ graphs? (1)

Adjacency Matrix Properties

* How will the adjacency matrix vary for an undirected graph?
* Undirected will be symmetric around the diagonal

N 4

* How can we adapt the representation for weighted graphs?
* |Instead of a Boolean, store a number in each cell

* Need some value to represent ‘not an edge’
* |n some situations, 0 or -1 works

T

Adjacency List

* Assign each node a number from O to |V |-1

* An array of length |V| in which each entry stores a list of all adjacent

vertices (eg., linked list)

(2) - 1
(1)

(3) 3

/

e

. . . 0
Adjacency List Properties [l < / L
Oliv \ 1 o d-{2 3]/
w6 sl ca s ‘
* Running time to: gl== vt 2 121/
* Get all of a vertex’s out-edges: 3 1 2]/
gﬁ where d is out-degree of vertex
* Get all of a vertex’s in-edges: :
YE |E J(but could keep a second adjacency list for this!)
@ (lll e if’'some edge exists:) ()
Q where d is out-degree of source (0)
Insert an edge: O

(unless you need to check if it’s there)
. Delet an edge:
3 where d is out-degree of source

. Space requirements: Best foror %graphs?
O]+ Iel) SOl <1ed ¢ O (V)

Algorithms

Okay, we can represent graphs

Now we’ll implement some useful and non-trivial algorithms!
* Topological Sort
 Shortest Paths
» Related: Determining if such a path exists

* Depth First Search
e Breadth First Search

Graphs: Topological Sort

Topological Sort

Given a DAG, order all the vertices so that every
vertex comes before all of its neighbors

One example output:
26, 1z auy E S L@ do, ey XY, 405
(~_" 2\/

Questions and comments A

* Why do we perform topological sorts only on DAGs?
Q\/ C&Q/ — No ovT2 G Ansuty”

* |s there always a unique answer? L
VQ/(}QMS YN 6{7\61

* Do some DAGs have exactly 1 answer?

\/25‘ Q»«—> a\\ \{3+5

* Terminology: A DAG represents a and a topological sort
produces a that is consistent with it

A few of its uses

* Figuring out how to graduate
 Computing an order in which to recompute cells in a spreadsheet
* Determining an order to compile files using a Makefile

* In general, taking a dependency graph and finding an order of
execution

A First Algorithm for Topological Sort

1. Label (“mark”) each vertex with its in-degree
e Could “write in a field in the vertex”
 Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
a) Choose a vertex v with in-degree of 0
b) Output v and conceptually remove it from the graph

c) For each vertex u adjacent to v (i.e. u such that (v,u) in E),
of u

Example

Node: 126 142 143 374 373 410

Removed? >< ><

In-degree: O X
X
O

Notice Ao
%/O
* Needed a vertex with in-degree O to start /
* Will always have at least 1 because ~\p Q?/CKQS .

* Ties among vertices with in-degrees of 0 can be broken arbitrarily
* Can be more than one correct answer, by definition, depending on the graph

Running time?

labelEachVertexWithItsInDegree () ;

for(i = 0; 1 < numVertices; 1i++) {
v = findNewVertexOfDegreeZero() ; -
. g () erst cate
put v next 1n output
, T
for each u adjacent to v (E:[: lvk
—_— u.lindegree--; Cﬂb
Wle

}

* What is the worst-case running time?
* Initialization D((VM{D (assuming adjacency list)
e Sum of all find-new-vertex 0(\\/(& (because each O(|V]))
* Sum of all decrements () (lzl} (assuming adjacency list)

* So total is QCM’*)— noWrse graph!

Doing better

The trick is to avoid searching for a zero-degree node every time!
* Keep the “pending” zero-degree nodes in a list, stack, queue, bag, table, or something

* Order we process them affects output but not correctness or efficiency,
provided that add/remove are both O(1)

Using a queue:

1. Label each vertex with its in-degree,
2. While queue is not empty

a)

b) Output vand remove it from the graph

c) For each vertex u adjacent to v (i.e. u such that (v,u) in E), decrement the in-degree of u,

Example: Topological Sort Using Queues

O
Queue: /2(%Jj |4

Output: ATS D C

Node A B C D

Removed? >< P)(><

In-degree 0 XY ¥ Ve
~ O o 0

The trick is to avoid searching for a zero-degree node every time!
1. Label each vertex with its in-degree, enqueue 0-degree nodes

2. While queue is not empty

a) v = dequeue()
b) Output v and remove it from the graph
c) For each vertex u adjacent to v (i.e. u such that (v,u) in E),

decrement the in-degree of u, if new degree is 0, enqueue it

Running time?
labelAllAndEnqueuezeros () ;
for(i=0; ctr < numVertices; ctr++) {

v = dequeue () ;
put v next in output
for each u adjacent to v {
u.indegree--;
1f (u.indegree==0)
enqueue (u) ;
}
}

* What is the worst-case running time?
. InitiaIization:O(lv*L [€l> (assuming adjacency list)
* Sum of all enqueues and dequeues: Q(WD
* Sum of all decrements: D(\ED (assuming adjacency list)
 Total: Q(\vp (E{» — much better for sparse graph!

Graph Traversals

Depth- and Breadth- First Searches!

Introductory Example: Graph Traversals

How would a computer systematically find a path through the maze?

Source

Destination

Note: under the hood, we’re using a graph to represent the maze

In graph terminology: find a path (if any) from one vertex to another.

Source
Source

Destination Destination

Find a path (if any) from one vertex to another. tLet’s try keeping (
— rack récursively e~ € e s
Idea: Repeatedly explore and keep track of adjacent vertices.
Mark each vertex we visit, so we don’t process each more than once.

/

Store as additional Source

L [;
SR .
V2 (2G| A

Var'\ab\e i)

C
B

M
L
K

Destination

Depth First Search (DFS)

(DFS):

Explore as far as possible along each branch before backtracking

Repeatedly explore adjacent vertices using ve cAvs1en or o stack
Mark each vertex we visit, so we don’t process each more than once.

Example pseudocode: DFS (Node start) ({
mark and process start

for each node u adjacent to start
if u is not marked
DF'S (u)

Find a path (if any) from one vertex to another. Now Jet’s try

Idea: Repeatedly explore and keep track of adjacent vertices.
Mark each vertex we visit, so we don’t process each more than once.

Source

e & AR

{2
| — KNG K
o 2 e 5

PN

Destination

B

Breadth First Search (BFS)
(BFS):

Explore neighbors first, before moving to the next level of neighbors.

Repeatedly explore adjacent vertices using TCAV S

Mark each vertex we visit, so we don’t process each more than once.

BFS (Node start) {
Example pseudocode: initialize queue g and engqueue start
mark start as visited
while (g is not empty) {
next = g.dequeue() // and “process”
for each node u adjacent to next
if(u is not marked)

mark u and enqueue onto g

Practice time!
What is one possible order of visiting the nodes of the following graph
when using Breadth First Search (BFS)?

M (N 0

Q P

A) MNOPQR @

B) NQMPOR D) QVINPOR

PREPPRING FOR A DATE:
WHAT SITUATIONS
MIGHT T PREPARE. RR?

1) MEDICAL EMERGENCY
2) DANCING

L, D) FO0D TOOEPENSIVE

o
o

OKAY, WHAT KINDS OF
EMERGENCIES CAN HPPEN?

) A) SNAKEBITE
B) LIGHTNING STRIKE

O FLLRM AR

0.
0

A

I~
HM. WHICH SNNESV\ZHQ-“I
DANGEROUS? LETS SEE...

1A) &) CORN SNAKE
b) GARTER SNAKE. ?

Rt g

%

THE RESEARCH (OMPARING

SNAKE VENOMS 1S SCATTERED
PND WCONSISTENT. TLL MAKE
A SPREADSHEET T ORGRNIZE IT

O

O

\

TIMHERETOPKK. BY Dy, THE INUAND
YOUUP. YOURE TAIPAN HAS THE DEADUEST
NOT DRESSED?

VENOM OF ANY SNAKE."

i

L

T REALY NEED To SToP

USING DEPTH-FIRST SEARCHES.

