CSE 373: Data Structures and Algorithms

Lecture 14: Introduction to Graphs

Instructor: Lilian de Greef
Quarter: Summer 2017

Today

- Overview of Midterm
- Introduce Graphs
- Mathematical representation
- Undirected \& Directed Graphs
- Self edges
- Weights
- Paths \& Cycles
- Connectedness
- Trees as graphs
- DAGs
- Density \& Sparsity

Midterm: Statistics and Distribution

Midterm: Distribution by Problem

Hash Tables

There is a hash table implemented with linear probing that doubles in size every time its load factor is strictly greater than $1 / 2$.
What is the worst-case condition for insert in this table?

What is the asymptotic worst-case running time to insert an item? (let $n=\#$ items in table)

What is the amortized running time to insert an item to this table?

Hash Tables

Now we have a hash table implemented with separate chaining in which each chain stores its keys in sorted order.
What is the worst-case condition for insert in this table?

What is the asymptotic worst-case running time to insert an item into this table?

Introducing: Graphs

Vertices, edges, and paths (oh my!)

Introductory Example

This representation is called a

In this example, locations (Seattle, Bainbridge Island, the East Side, and Mercer Island) are the

And the roads, bridges, and ferry lines are the

Graphs

- A graph is a formalism for representing relationships among items
- Very general definition because very general concept
- A graph is a pair
- A set of vertices, also known as $\mathrm{V}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$

- A set of edges
$E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$
- An edge "connects" the vertices
- Each edge e_{i} is a pair of vertices

$$
\begin{aligned}
\mathrm{V}= & \{\mathrm{S}, \mathrm{M}, \mathrm{E}, \mathrm{~B}\} \\
\mathrm{E}= & \{(\mathrm{S}, \mathrm{~B}), \\
& (\mathrm{S}, \mathrm{E}), \\
& (\mathrm{S}, \mathrm{M}), \\
& (\mathrm{M}, \mathrm{E})\}
\end{aligned}
$$

- Graphs can be directed or undirected

Another Example:

($\mathrm{V}=\{$ characters $\}$, $\mathrm{E}=\{$ romances $\}$)

Undirected Graphs

- In undirected graphs, edges have no specific direction
- Edges are always

- Thus, $(u, v) \in E$ implies $(v, u) \in E$
- Only one of these edges needs to be in the set
- The other is implicit, so normalize how you check for it
- Degree of a vertex: number of edges containing that vertex
- Put another way: the number of adjacent vertices
degree $(S)=$
degree $(B)=$

Directed Graphs

- In directed graphs (sometimes called digraphs), edges have a direction
B

or

- Thus, $(u, v) \in E$ does not imply $(v, u) \in E$.
- Let $(u, v) \in E$ mean $u \rightarrow v$
- Call u the source and v the destination
- In-degree of a vertex: number of in-bound edges, i.e., edges where the vertex is the destination
- Out-degree of a vertex: number of out-bound edges i.e., edges where the vertex is the source

$$
\text { in-degree }(E)=
$$

out-degree $(B)=$

Self-Edges, Connectedness

- A self-edge a.k.a. a loop is an edge of the form (u, u)
- Depending on the use/algorithm, a graph may have:
- No self edges
- Some self edges
- All self edges (often therefore implicit, but we will be explicit)
- A node can have a degree / in-degree / out-degree of
- A graph does not have to be connected
- Even if every node has non-zero degree

More notation

For a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$:

- | $\mathrm{V} \mid$ is the number of vertices
- $|\mathrm{E}|$ is the number of edges

- Minimum?
- Maximum for undirected?
- Maximum for directed? (assuming self-edges allowed, else subtract |V|)
- If $(u, v) \in E$
- Then v is a neighbor of u, i.e., v is adjacent to $u \quad$ Is M adjacent to B ?
- Order matters for directed edges
- u is not adjacent to v unless $(v, u) \in E$

Is S adjacent to B ?
Is B adjacent to S ?

Examples

Which would...
Use directed edges? Have self-edges? Be connected? Have 0-degree nodes?

1. Web pages with links
2. Facebook friends
3. Methods in a program that call each other
4. Road maps (e.g., Google maps)
5. Airline routes
6. Family trees
7. Course pre-requisites

Weighted Graphs

- In a weighed graph, each edge has a weight a.k.a. cost
- Typically numeric (most examples use ints)
- Some graphs allow negative weights; many do not

Examples

What, if anything, might weights represent for each of these?
Do negative weights make sense?

- Web pages with links
- Facebook friends
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites

Paths and Cycles

- A path is a list of vertices $\left[\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}\right]$ such that $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right) \in \mathrm{E}$ for all $0 \leq i<n$. Said as "a path from v_{0} to v_{n} "
- A cycle is a path that begins and ends at the same node $\left(\mathrm{v}_{0}==\mathrm{v}_{\mathrm{n}}\right)$

Example: [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Path Length and Cost

Path length: Number of edges in a path
Path cost: Sum of weights of edges in a path
Example:
let $P=$ [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

$$
\begin{aligned}
& \text { length }(\mathrm{P})= \\
& \operatorname{cost}(\mathrm{P})=
\end{aligned}
$$

Simple Paths and Cycles

- A simple path repeats no vertices, except the first might be the last
e.g. [Seattle, Salt Lake City, San Francisco, Dallas] [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
- Recall, a cycle is a path that ends where it begins e.g. [Seattle, Salt Lake City, San Francisco, Dallas, Seattle] [Seattle, Salt Lake City, Seattle, Dallas, Seattle]
- A simple cycle is a cycle and a simple path
e.g. [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

Paths and Cycles in Directed Graphs

Example:

Is there a path from B to M ?

Does the graph contain any cycles?

Undirected-Graph Connectivity

- An undirected graph is connected if for all pairs of vertices (u, v), there exists a path from u to v

Connected graph

- An undirected graph is complete, a.k.a. fully connected if for all pairs of vertices (u, v), there exists an edge from u to v

Directed-Graph Connectivity

- A directed graph is strongly connected if there is a path from every vertex to every other vertex
- A directed graph is weakly connected if there is a path from every vertex to every other vertex ignoring direction of edges
- A complete a.k.a. fully connected directed graph has an edge from every vertex to every other vertex

Practice Time!

Let graph $G=(V, E)$
where

$$
\begin{aligned}
V & =\{a, b, c, d\} \\
E & =\{(a, b),(b, c),(a, c),(b, d)\}
\end{aligned}
$$

How connected is G ?
A. Disconnected
C. Strongly Connected
B. Weakly Connected
D. Complete / Fully Connected

Trees as Graphs

When talking about graphs, we say a tree is a graph that is:

- Connected
- Acyclic
 when you treat edges as undirected

Note that

- Edges can be undirected
- All trees are graphs, but not all graphs are trees

Rooted Trees

- We are more accustomed to rooted trees where:
- We identify a unique root
- We think of edges as directed: parent to children
- Given a tree, picking a root gives a unique rooted tree
- The tree is just drawn differently

Rooted Trees

- We are more accustomed to rooted trees where:
- We identify a unique root
- We think of edges as directed: parent to children
- Given a tree, picking a root gives a unique rooted tree
- The tree is just drawn differently

Directed Acyclic Graphs (DAGs)

- A DAG is a directed graph with no (directed) cycles
- Every rooted directed tree is a DAG
- But not every DAG is a rooted directed tree

DAG?

DAG?

- Every DAG is a directed graph
- But not every directed graph is a DAG

Examples

Which of our directed-graph examples do you expect to be a DAG?

- Web pages with links
- Methods in a program that call each other
- Airline routes
- Family trees
- Course pre-requisites

Density / Sparsity

- Recall: In an undirected graph, $0 \leq|\mathrm{E}|<|\mathrm{V}|^{2}$
- Recall: In a directed graph: $0 \leq|\mathrm{E}| \leq|\mathrm{V}|^{2}$
- So for any graph, $O(|\mathrm{E}|+|\mathrm{V}|)$ is
- Another fact: If an undirected graph is connected, then $|\mathrm{V}|-1 \leq|\mathrm{E}|$
- Because $|\mathrm{E}|$ is often much smaller than its maximum size, we do not always approximate $|\mathrm{E}|$ as $O\left(|\mathrm{~V}|^{2}\right)$
- This is a correct bound, it just is often not tight
- If it is tight, i.e., $|E|$ is $\theta\left(|V|^{2}\right)$ we say the graph is dense
- More sloppily, dense means
- If $|\mathrm{E}|$ is $O(|\mathrm{~V}|)$ we say the graph is sparse
- More sloppily, sparse means "most possible edges

What is the Data Structure?

- So graphs are really useful for lots of data and questions
- For example, "what's the lowest-cost path from x to y "
- But we need a data structure that represents graphs
- The "best one" can depend on:
- Properties of the graph (e.g., dense versus sparse)
- The common queries (e.g., "is (u,v) an edge?" versus "what are the neighbors of node u?")
- So we'll discuss the two standard graph representations
- Adjacency Matrix and Adjacency List
- Different trade-offs, particularly time versus space

Adjacency Matrix

- Assign each node a number from 0 to $|\mathrm{V}|-1$
- $\mathrm{A}|\mathrm{V}| \mathrm{x}|\mathrm{V}|$ matrix (i.e., 2-D array) of Booleans (or 1 vs .0)
- If M is the matrix, then $M[u][v]==$ true means there is an edge from u to v

Adjacency Matrix Properties

- Running time to:
- Get a vertex's out-edges:
- Get a vertex's in-edges:
- Decide if some edge exists:
- Insert an edge:
- Delete an edge:

	0	1	2	3
0	F	F	F	F
1	T	F	T	T
2	F	F	T	T
3	F	T	T	F

- Space requirements:
- Best for sparse or dense graphs?

Adjacency Matrix Properties

- How will the adjacency matrix vary for an undirected graph?
- Undirected will be symmetric around the diagonal
- How can we adapt the representation for weighted graphs?
- Instead of a Boolean, store a number in each cell
- Need some value to represent 'not an edge'
- In some situations, 0 or -1 works

Adjacency List

- Assign each node a number from 0 to $|\mathrm{V}|-1$
- An array of length |V| in which each entry stores a list of all adjacent vertices (e.g., linked list)

Adjacency List Properties

- Running time to:
- Get all of a vertex's out-edges:
where d is out-degree of vertex

- Get all of a vertex's in-edges:
(but could keep a second adjacency list for this!)
- Decide if some edge exists:
where d is out-degree of source
- Insert an edge:
(unless you need to check if it's there)

- Delete an edge:
where d is out-degree of source
- Space requirements:

Best for sparse or dense graphs?

- $O(|V|+|E|)$

