CSE 373: Data Structures and Algorithms

Lecture 14: Introduction to Graphs

Instructor: Lilian de Greef
Quarter: Summer 2017

Today

e Overview of Midterm

* Introduce Graphs
* Mathematical representation
* Undirected & Directed Graphs
* Self edges
* Weights

Paths & Cycles

Connectedness

Trees as graphs

DAGs

Density & Sparsity

Total

Count of Number of Records

Midterm: Statistics and Distribution

10

o0}

N

N

o

Remember: it’s curved 20% of grade = can pass

class with even a 0 on exam

et ||d|uhhl

Total:

Mean

Std. dev.

Median

Mode

Max

31.2 /43
5.48
32.5/43
34 /43

41 /43

Midterm: Distribution by Problem

#1: True/False #2: Big-0O #3: More Analysis #4: Hash Tables
E 20 g 30 g 30 £ 30
3 3 3 3
Z Z 20 Z 20 Z 20
o 10 o it 2
< S 10 S 10 S 10
S 0 m B . H R I S o l I m S ___ll
2 4 6 8 0 2 4 0 2 4 0 2 4 6
Problem 1 Problem 2 Problem 3 Problem 4
#5: BSTs #6: AVL Trees #7: Heaps #8: Des. Decisions
E: 15 E 40 g 40 E 15
§ 5 30 = 30 =
5 10 S 20 S 20 5 10
£ s < S 10 £ s
R | | g I m S _ malll S I I -
0 2 4 6 3 4 5 6 7 0 2 4 6 0 2 4 6

Problem 5 Problem 6 Problem 7 Problem 8

Hash Tables

There is a hash table implemented with linear probing that doubles in
size every time its load factor is strictly greater than 1/2.

What is the worst-case condition for insert in this table?

What is the asymptotic worst-case running time to insert an item?
(let n = # items in table)

What is the amortized running time to insert an item to this table?

Hash Tables

Now we have a hash table implemented with separate chaining in
which each chain stores its keys in sorted order.

What is the worst-case condition for insert in this table?

What is the asymptotic worst-case running time to insert an item into
this table?

Introducing: Graphs

Vertices, edges, and paths (oh my!)

Introductory Example

This representation is
called a

. .
—y- In this example, locations
[Bal'“lb”:ge East Side (Seattle, Bainbridge Island,
Sl?nd Seattle . the East Side, and Mercer
g Island) are the
=
:
e 2
90 S
1 i
'\I/lgﬁzr And the roads, bridges, and

astle ferry lines are the

Graphs

* A graph is a formalism for representing relationships among items
* Very general definition because very general concept

* A is a pair
* Aset of , also known as
V = {vy,V,, ., Vv,}
* Asetof
E = {e;,e,,.,e,}) V = {S,M,E,B}
* An edge “connects” the vertices E = {(S,B),
* Each edge e, is a pair of vertices (S,E),
(S,M),
(M,E) }

e Graphs can be or

SULDIEK

Another Example: | Q @ @

(V = { characters },
E = { romances })

s o
BLACK CAT
TYPHOID
MARY
MOCKINGBIRD
SPIDER-
= WOMAN

\ MADELYNE
_ PRYOR /

@ BANDIT
SEBASTIAN

SHAW BELLADONNA

LILANDRA
NERAMANI
LOURDES LONGSHOT
o/ B 4

CHANTEL

PROFESSOR X

/ PANTHER BEYONDER

COPYCAT

Undirected Graphs

*In , edges have no specific direction
* Edges are always

Seattle
(s)

e Thus, (u,v) € E implies (v,u) € E
— Only one of these edges needs to be in the set
— The other is implicit, so normalize how you check for it

of a vertex: number of edges containing that vertex degree(S) =

— Put another way: the number of adjacent vertices degree() =

Directed Graphs

* In (sometimes called), edges have a direction

® © ® ©

or

e Thus, (u,v) € E does notimply (v, u) € E.
e let (u,v) €eE mean u—> v
e Call uthe and v the

of a vertex: number of in-bound edges, n-degree(E) =

i.e., edges where the vertex is the destination
out-degree(B) =

of a vertex: number of out-bound edges
i.e., edges where the vertex is the source

Self-Edges, Connectedness

A a.k.a. a is an edge of the form (u, u)

* Depending on the use/algorithm, a graph may have:
* No self edges
e Some self edges
» All self edges (often therefore implicit, but we will be explicit)

* A node can have a degree / in-degree / out-degree of

* A graph does not have to be
* Even if every node has non-zero degree

More notation

ForagraphG = (V,E): E = 1(8,8),
(S,E),
| V] is the number of vertices (S,M),
(M,E) }

e |E| isthe number of edges
e Minimum?
¢ Maximum for undirected?

e Maximum for directed?
(assuming self-edges allowed, else subtract |V |)

*If (u,v) € E
* Thenvisa of u,i.e., vis tou Is M adjacent to B?

e Order matters for directed edges

. i 2
* ulsnot tov unless (v,u) € E Is S adjacent to B?

Is B adjacent to S?

Examples

Which would...
Use ? Have ? Be

Web pages with links

Facebook friends

Methods in a program that call each other
Road maps (e.g., Google maps)

Airline routes

Family trees

Course pre-requisites

NoUuhRwWDNRE

? Have

Weighted Graphs

* In a weighed graph, each edge has a a.k.a.
 Typically numeric (most examples use ints)
* Some graphs allow negative weights; many do not

Examples

What, if anything, might weights represent for each of these?
Do negative weights make sense?

* Web pages with links

* Facebook friends

 Methods in a program that call each other
* Road maps (e.g., Google maps)

* Airline routes

* Family trees

* Course pre-requisites

Paths and Cycles

e A is a list of vertices [v,, v,,.., v,] suchthat (v,,v,,;) e E forall0<i<n.
Said as “a path from v, tov_”

e A is a path that begins and ends at the same node (v, == v)

Chicago

Seattle

(_)salt Lake City

San Francisco

Dallas

Example: [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Path Length and Cost

Number of edges in a path
Sum of weights of edges in a path

Example:
let P = [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

3.5 Chicago
Seattle
2 2 length(P) =
2 Salt Lake City
2.5 cost(P) =
2.5 2.5

(J 3

San Francisco Dallas

Simple Paths and Cycles

e A repeats no vertices, except the first might be the last
e.g. [Seattle, Salt Lake City, San Francisco, Dallas]
[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

* Recall, a is a path that ends where it begins
e.g. [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
[Seattle, Salt Lake City, Seattle, Dallas, Seattle]

e A is a cycle and a simple path
e.g. [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

Paths and Cycles in Directed Graphs

Example:

Is there a path fromBtoM?

Does the graph contain any cycles?

Undirected-Graph Connectivity

* An undirected graph is connected if
for all pairs of vertices (u, v), there exists a path from u to v

O O O ® O O
QOOO QOOO

Connected graph Connected graph

* An undirected graph is complete, a.k.a. fully connected if
for all pairs of vertices (u, v), there exists an edge from u to v

OOO

O O

Directed-Graph Connectivity

* Adirected graph is strongly connected if
there is a path from every vertex to every
other vertex

* A directed graph is weakly connected if there
is a path from every vertex to every other
vertex ignoring direction of edges

e A complete a.k.a. fully connected directed
graph has an edge from every vertex to every

other vertex
plus self edges

Practice Time!

Let graph G = (V, E)
where
V = {a, b, Cy d-}

E = {(a,b), (b,c),

How connected is G?
A. Disconnected

B. Weakly Connected

(a,c), (b,d)}

C. Strongly Connected

D. Complete / Fully Connected

Trees as Graphs

When talking about graphs,

we say a is a graph that is:
* Connected
* Acyclic
when you treat edges as undirected

Note that

* Edges can be undirected
 All trees are graphs, but not all graphs are trees

Rooted Trees

* We are more accustomed to where:
* We identify a unique root
* We think of edges as directed: parent to children

* Given a tree, picking a root gives a unique rooted tree
* The tree is just drawn differently

0
(8)

redrawn

—>

)

Rooted Trees

* We are more accustomed to where:
* We identify a unique root
* We think of edges as directed: parent to children

* Given a tree, picking a root gives a unique rooted tree
* The tree is just drawn differently

0
(8)

redrawn

—>

)

Directed Acyclic Graphs (DAGs)

° A is a directed graph with no (directed) cycles
* Every rooted directed tree is a DAG
* But not every DAG is a rooted directed tree

DAG? DAG? DAG?

e Every DAG is a directed graph
* But not every directed graph is a DAG

Examples

Which of our directed-graph examples do you expect to be a DAG?

* Web pages with links

* Methods in a program that call each other
* Airline routes

* Family trees

* Course pre-requisites

Density / Sparsity

Recall: In an undirected graph, 0 < |E| < |V]?
Recall: In a directed graph: 0< |E| < |V|?

So for any graph, O(|E|+|V]) is
Another fact: If an undirected graph is connected, then |V|-1< |E|

Because |E| is often much smaller than its maximum size, we do not always
approximate |E| as O(|V|?)
* This is a correct bound, it just is often not tight
 Ifitistight,i.e., |E| is 8(|V|?) we say the graph is
* More sloppily, dense means
 If |E|is O(|V]) we say the graph is

* More sloppily, sparse means “most possible edges

What is the Data Structure?

* So graphs are really useful for lots of data and questions
* For example, “what’s the lowest-cost path from x to y”

* But we need a data structure that represents graphs

* The “best one” can depend on:
* Properties of the graph (e.g., dense versus sparse)
* The common queries (e.g., “is (u, v) an edge?” versus “what are the neighbors of node u?”)

* So we’ll discuss the two standard graph representations
and
» Different trade-offs, particularly time versus space

Adjacency Matrix

* Assign each node a number from O to |V |-1
* A |V]| x | V| matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)

e [f Mis the matrix, thenM[u] [v] == true
means there is an edge from u to v 1
Y (2) 1

(1) X

Adjacency Matrix Properties

* Running time to: F F F F
* Get a vertex’s out-edges:

=
—
-
—

Get a vertex’s in-edges:

-
- | -

Decide if some edge exists: 2| F F

Insert an edge:

'n
-
-
-

Delete an edge:

» Space requirements:

(2)

1
* Best for sparse or dense graphs? o

Adjacency Matrix Properties

* How will the adjacency matrix vary for an undirected graph?
e Undirected will be symmetric around the diagonal

* How can we adapt the representation for weighted graphs?
* |Instead of a Boolean, store a number in each cell

* Need some value to represent ‘not an edge’
* |n some situations, 0 or -1 works

Adjacency List

* Assign each node a number from O to |V |-1

* An array of length |V| in which each entry stores a list of all adjacent
vertices (e.g., linked list)

(2) 1

(1)

Adjacency List Properties /
1 [2 /
* Running time to: 2 121/
* Get all of a vertex’s out-edges: JI[217
* Get all of a vertex’s in-edges:
* Decide if some edge exists: N (2)

(1)

Insert an edge:

Delete an edge:

* Space requirements: Best for sparse or dense graphs?

