
Instructor:	Lilian	de	Greef
Quarter:	Summer	2017

CSE	373:	Data	Structures	and	Algorithms
Lecture	14:	Introduction	to	Graphs

Today

• Overview	of	Midterm
• Introduce	Graphs
• Mathematical	representation
• Undirected	&	Directed	Graphs
• Self	edges
• Weights
• Paths	&	Cycles
• Connectedness
• Trees	as	graphs
• DAGs
• Density	&	Sparsity

Midterm:	Statistics	and	Distribution

Mean 31.2	/43

Std.	dev. 5.48

Median	 32.5	/43

Mode 34 /43

Max 41	/43

Remember:	it’s	curved 20%	of	grade	→ can	pass	
class	with	even	a	0	on	exam

Midterm:	Distribution	by	Problem

Hash	Tables
There	is	a	hash	table	implemented	with	linear	probing	that	doubles	in	
size	every	time	its	load	factor	is	strictly	greater	than	1⁄2.	
What	is	the	worst-case	condition	for	insert	in	this	table?	

What	is	the	asymptotic	worst-case	running	time	to	insert	an	item?	
(let	n	=	#	items	in	table)

What	is	the	amortized	running	time	to	insert	an	item	to	this	table?	

Hash	Tables
Now	we	have	a	hash	table	implemented	with	separate	chaining	in	
which	each	chain	stores	its	keys	in	sorted	order.	
What	is	the	worst-case	condition	for	insert	in	this	table?

What	is	the	asymptotic	worst-case	running	time	to	insert	an	item	into	
this	table?	

Introducing:	Graphs
Vertices,	edges,	and	paths	(oh	my!)

Introductory	Example

Bainbridge	
Island Seattle

Mercer	
Island

East	Side

This	representation	is	
called	a

In	this	example,	locations	
(Seattle,	Bainbridge	Island,	
the	East	Side,	and	Mercer	
Island)	are	the

And	the	roads,	bridges,	and	
ferry	lines	are	the

Graphs
• A	graph	is	a	formalism	for	representing	relationships	among	items

• Very	general	definition	because	very	general	concept

• A	graph is	a	pair

• A	set	of	vertices,	also	known	as
V = {v1,v2,…,vn}

• A	set	of	edges
E = {e1,e2,…,em}

• An	edge	“connects”	the	vertices

• Each	edge	ei is	a	pair	of	vertices	

• Graphs	can	be	directed or	undirected

Bainbridge	
(B)

Seattle	
(S)

Mercer	
Island	(M)

East	
Side	(E)

V = {S,M,E,B}
E = {(S,B),

(S,E),
(S,M),
(M,E)}

Another	Example:

So
ur
ce
:	h
tt
p:
//
w
w
w
.w
eb

ho
st
in
gb
uz
z.c

om
/b
lo
g/
20

15
/0
2/
10

/s
up

er
lo
ve
-m

ar
ve
ls-

ro
m
an
tic
-re

la
tio

ns
hi
ps
-m

ap
pe

d/

(V =	{ characters	},	
E =	{ romances	})

Undirected	Graphs
• In	undirected	graphs,	edges	have	no	specific	direction

• Edges	are	always

• Thus,	(u,v) Î E implies (v,u) Î E
– Only	one	of	these	edges	needs	to	be	in	the	set
– The	other	is	implicit,	so	normalize	how	you	check	for	it

• Degree of	a	vertex:	number	of	edges	containing	that	vertex
– Put	another	way:	the	number	of	adjacent	vertices

Bainbridge	
(B)

Seattle	
(S)

Mercer	
Island	(M)

East	
Side	(E) B S

M

E

degree(S)	=	

degree(B)	=

Directed	Graphs
• In	directed	graphs (sometimes	called	digraphs),	edges	have	a	direction

• Thus,	(u,v)Î E does	not imply	(v,u)Î E.		
• Let	(u,v)Î E mean	 u→	v
• Call	u the	source and	v the	destination

• In-degree of	a	vertex:	number	of	in-bound	edges,
i.e.,	edges	where	the	vertex	is	the	destination

• Out-degree of	a	vertex:	number	of	out-bound	edges
i.e.,	edges	where	the	vertex	is	the	source

orB S

M

E
B S

M

E

In-degree(E)	=	

Out-degree(B)	=

Self-Edges,	Connectedness

• A	self-edge a.k.a.	a	loop is	an	edge	of	the	form	(u,u)
• Depending	on	the	use/algorithm,	a	graph	may	have:

• No	self	edges
• Some	self	edges
• All	self	edges	(often	therefore	implicit,	but	we	will	be	explicit)

• A	node	can	have	a	degree	/	in-degree	/	out-degree	of

• A	graph	does	not	have	to	be	connected
• Even	if	every	node	has	non-zero	degree

More	notation

For	a	graph	G = (V,E):

• |V| is	the	number	of	vertices
• |E| is	the	number	of	edges

• Minimum?	
• Maximum	for	undirected?	
• Maximum	for	directed?					

• If	(u,v) Î E
• Then	v is	a	neighbor of	u,	i.e.,	v is	adjacent to	u
• Order	matters	for	directed	edges

• u is	not	adjacent to	v unless	(v,u) Î E

(assuming	self-edges	allowed,	else	subtract	|V|)

B S

M

E V = {S,M,E,B}
E = {(S,B),

(S,E),
(S,M),
(M,E)}

Is	M adjacent	to	B?

Is	S adjacent	to	B?

Is	B adjacent	to	S?

Examples

Which	would…	
Use	directed	edges?	Have	self-edges?		Be	connected?		Have	0-degree	nodes?

1. Web	pages	with	links
2. Facebook friends
3. Methods	in	a	program	that	call	each	other
4. Road	maps	(e.g.,	Google	maps)
5. Airline	routes
6. Family	trees
7. Course	pre-requisites

Weighted	Graphs

• In	a	weighed	graph,	each	edge	has	a	weight a.k.a.	cost
• Typically	numeric	(most	examples	use	ints)
• Some	graphs	allow	negative	weights;	many	do	not

B
S

M

E

Examples

What,	if	anything,	might	weights	represent	for	each	of	these?		
Do	negative	weights	make	sense?

• Web	pages	with	links
• Facebook friends
• Methods	in	a	program	that	call	each	other
• Road	maps	(e.g.,	Google	maps)
• Airline	routes
• Family	trees
• Course	pre-requisites

Paths	and	Cycles
• A	path is	a	list	of	vertices	[v0,v1,…,vn] such	that	(vi,vi+1)Î E for	all	0 £ i < n.
Said	as	“a	path	from v0 to	vn”

• A	cycle is	a	path	that	begins	and	ends	at	the	same	node (v0 ==	vn)

Seattle

San	Francisco
Dallas

Chicago

Salt	Lake	City

Example:	[Seattle,]Salt	Lake	City,	Chicago,	Dallas,	San	Francisco, Seattle

Path	Length	and	Cost
Path	length: Number	of	edges in	a	path

Path	cost: Sum	of	weights of	edges	in	a	path

Example:
let	P = [Seattle,	Salt	Lake	City,	Chicago,	Dallas,	San	Francisco,	Seattle]

Chicago
Seattle

San	Francisco Dallas

Salt	Lake	City

length(P)	=	

cost(P)	=

3.5

2 2

2.5

3

2
2.5

2.5

Simple	Paths	and	Cycles

• A	simple	path repeats	no	vertices,	except	the	first	might	be	the	last
e.g.	 [Seattle,	Salt	Lake	City,	San	Francisco,	Dallas]

[Seattle,	Salt	Lake	City,	San	Francisco,	Dallas,	Seattle]

• Recall,	a	cycle is	a	path	that	ends	where	it	begins
e.g. [Seattle,	Salt	Lake	City,	San	Francisco,	Dallas,	Seattle]

[Seattle,	Salt	Lake	City,	Seattle,	Dallas,	Seattle]

• A	simple	cycle is	a	cycle	and	a	simple	path
e.g. [Seattle,	Salt	Lake	City,	San	Francisco,	Dallas,	Seattle]

Paths	and	Cycles	in	Directed	Graphs

Example:

Is	there	a	path	from	B to	M ?				

Does	the	graph	contain	any	cycles?				

B S

M

E

Undirected-Graph	Connectivity

• An	undirected	graph	is	connected if	
for	all	pairs	of	vertices	(u,v),	there	exists	a	path from	u to	v

• An	undirected	graph	is	complete,	a.k.a.	fully	connected if	
for	all pairs	of	vertices	(u,v),	there	exists	an	edge from	u to	v

Connected	graph Connected	graph

Directed-Graph	Connectivity

• A	directed	graph	is	strongly	connected if	
there	is	a	path	from	every	vertex	to	every	
other	vertex

• A	directed	graph	is	weakly	connected if	there	
is	a	path	from	every	vertex	to	every	other	
vertex	ignoring	direction	of	edges

• A	complete a.k.a.	fully	connected directed	
graph	has	an	edge	from	every	vertex	to	every	
other	vertex

plus	self	edges

Practice	Time!

Let	graph G = (V, E)

where
V = {a, b, c, d}

E = {(a,b), (b,c), (a,c), (b,d)}

How	connected	is	G?

A. Disconnected

B. Weakly	Connected

C. Strongly	Connected

D. Complete	/	Fully	Connected

Trees	as	Graphs

When	talking	about	graphs,	
we	say	a	tree is	a	graph	that	is:
• Connected
• Acyclic
when	you	treat	edges	as	undirected

Note	that
• Edges	can	be	undirected
• All	trees	are	graphs,	but	not	all	graphs	are	trees

A

B

D E

C

F

HG

A

B

D E

C

F

HG

Rooted	Trees
• We	are	more	accustomed	to	rooted	trees where:

• We	identify	a	unique	root
• We	think	of	edges	as	directed:	parent	to	children

• Given	a	tree,	picking	a	root	gives	a	unique	rooted	tree	
• The	tree	is	just	drawn	differently

A

B

D E

C

F

HG

redrawn

A

B

D E

C

F

HG

Rooted	Trees
• We	are	more	accustomed	to	rooted	trees where:

• We	identify	a	unique	root
• We	think	of	edges	as	directed:	parent	to	children

• Given	a	tree,	picking	a	root	gives	a	unique	rooted	tree	
• The	tree	is	just	drawn	differently

A

B

D E

C

F

HG

redrawn

F

G H C

A

B

D E

Directed	Acyclic	Graphs	(DAGs)

• A	DAG is	a	directed	graph	with	no	(directed)	cycles
• Every	rooted	directed	tree	is	a	DAG
• But	not	every	DAG	is	a	rooted	directed	tree

• Every	DAG	is	a	directed	graph
• But	not	every	directed	graph	is	a	DAG

DAG? DAG?DAG?

Examples

Which	of	our	directed-graph	examples	do	you	expect	to	be	a	DAG?

• Web	pages	with	links
• Methods	in	a	program	that	call	each	other
• Airline	routes
• Family	trees
• Course	pre-requisites

Density	/	Sparsity
• Recall:	In	an	undirected	graph,	0	≤	|E|	<	|V|2

• Recall:	In	a	directed	graph:	0	≤	|E|	≤	|V|2

• So	for	any	graph,	O(|E|+|V|) is

• Another	fact:	If	an	undirected	graph	is	connected,	then	|V|-1	≤	|E|

• Because	|E| is	often	much	smaller	than	its	maximum	size,	we	do	not	always	
approximate	|E| as	O(|V|2)
• This	is	a	correct	bound,	it	just	is	often	not	tight
• If	it	is	tight,	i.e.,	|E| is	θ(|V|2) we	say	the	graph	is	dense

• More	sloppily,	dense	means

• If |E|	is	O(|V|) we	say	the	graph	is	sparse
• More	sloppily,	sparse	means	“most	possible	edges

What	is	the	Data	Structure?

• So	graphs	are	really	useful	for	lots	of	data	and	questions	
• For	example,	“what’s	the	lowest-cost	path	from	x	to	y”

• But	we	need	a	data	structure	that	represents	graphs

• The	“best	one”	can	depend	on:
• Properties	of	the	graph	(e.g.,	dense	versus	sparse)
• The	common	queries	(e.g.,	“is	(u,v) an	edge?”	versus	“what	are	the	neighbors	of	node	u?”)

• So	we’ll	discuss	the	two	standard	graph	representations
• Adjacency	Matrix and	Adjacency	List
• Different	trade-offs,	particularly	time	versus	space

Adjacency	Matrix

• Assign	each	node	a	number	from	0 to	|V|-1
• A	|V| x	|V|matrix	(i.e.,	2-D	array)	of	Booleans	(or	1	vs.	0)
• If	M is	the	matrix,	then	M[u][v] == true
means	there	is	an	edge	from	u to	v

B S

M

E

(0) (1)
(2)

(3)

0 1 2 3

0

1

2

3

Adjacency	Matrix	Properties

• Running	time	to:
• Get	a	vertex’s	out-edges:	
• Get	a	vertex’s	in-edges:	
• Decide	if	some	edge	exists:	
• Insert	an	edge:
• Delete	an	edge:	

• Space	requirements:

• Best	for	sparse	or	dense	graphs?

F F F F

T F T T

F F T T

F T T F

0 1 2 3

0

1

2

3

B S

M

E

(0)
(1)

(2)

(3)

Adjacency	Matrix	Properties

• How	will	the	adjacency	matrix	vary	for	an	undirected	graph?
• Undirected	will	be	symmetric	around	the	diagonal

• How	can	we	adapt	the	representation	for	weighted	graphs?
• Instead	of	a	Boolean,	store	a	number	in	each	cell
• Need	some	value	to	represent	‘not	an	edge’

• In	some situations,	0	or	-1	works

Adjacency	List

• Assign	each	node	a	number	from	0 to	|V|-1
• An	array	of	length	|V|	in	which	each	entry	stores	a	list	of	all	adjacent	
vertices	(e.g.,	linked	list)

B S

M

E

(0) (1)
(2)

(3)

0

1

2

3

Adjacency	List	Properties

• Running	time	to:
• Get	all	of	a	vertex’s	out-edges:	

where	d is	out-degree	of	vertex
• Get	all	of	a	vertex’s	in-edges:

(but	could	keep	a	second	adjacency	list	for	this!)
• Decide	if	some	edge	exists:	

where	d is	out-degree	of	source
• Insert	an	edge:	

(unless	you	need	to	check	if	it’s	there)
• Delete	an	edge:	

where	d is	out-degree	of	source

• Space	requirements:
• O(|V|+|E|)

Best	for	sparse	or	dense	graphs?

0

1

2

3

0 3 /

/

3 /

1 2 /

2

B S

M

E

(0)
(1)

(2)

(3)

