Today

• Overview of Midterm
• Introduce Graphs
 • Mathematical representation
 • Undirected & Directed Graphs
 • Self edges
 • Weights
 • Paths & Cycles
 • Connectedness
 • Trees as graphs
 • DAGs
 • Density & Sparsity
Midterm: Statistics and Distribution

Remember: it’s curved 20% of grade → can pass class with even a 0 on exam

Mean 31.2 /43
Std. dev. 5.48
Median 32.5 /43
Mode 34 /43
Max 41 /43
Midterm: Distribution by Problem

#1: True/False
#2: Big-O
#3: More Analysis
#4: Hash Tables
#5: BSTs
#6: AVL Trees
#7: Heaps
#8: Des. Decisions
Hash Tables

There is a hash table implemented with linear probing that doubles in size every time its load factor is strictly greater than 1/2.

What is the worst-case condition for insert in this table?
- rehash (copy over n items)
 - cluster of size n when rehash

What is the asymptotic worst-case running time to insert an item? (let n = # items in table)
\[O(n^2) \]

What is the amortized running time to insert an item to this table?
\[\frac{n^2}{n} = O(n) \]
Hash Tables

Now we have a hash table implemented with separate chaining in which each chain stores its keys in sorted order.

What is the worst-case condition for insert in this table?

- rehash
- insert $O(n)$ (sorting)

What is the asymptotic worst-case running time to insert an item into this table?

$\times O(n) = O(n^2)$
Questions on Midterm?

• We’re happy to go over answers with you!

• Come visit any of our office hours 😊

• We encourage it! Mistakes are one of the best ways to learn.
Fun drawing on last page of a midterm:

Failed attempt @ drawing a unicorn.

T.A.'s for this class are unicorns cuz they are rad 😎
Introducing: Graphs

Vertices, edges, and paths (oh my!)
Introductory Example

This representation is called a **graph**.

In this example, locations (Seattle, Bainbridge Island, the East Side, and Mercer Island) are the **nodes**. And the roads, bridges, and ferry lines are the **edges**.
Graphs

• A graph is a formalism for representing relationships among items
 • Very general definition because very general concept

• A graph is a pair $G = (V, E)$
 • A set of vertices, also known as nodes $V = \{v_1, v_2, \ldots, v_n\}$
 • A set of edges $E = \{e_1, e_2, \ldots, e_m\}$
 • An edge “connects” the vertices
 • Each edge e_i is a pair of vertices $e_i = (v_j, v_k)$

• Graphs can be directed or undirected
Another Example:

\(V = \{ \text{characters} \} \), \(E = \{ \text{romances} \} \)
Undirected Graphs

• In **undirected graphs**, edges have no specific direction
 • Edges are always "two-way"

Thus, \((u, v) \in E\) implies \((v, u) \in E\)
 – Only one of these edges needs to be in the set
 – The other is implicit, so normalize how you check for it

• **Degree** of a vertex: number of edges containing that vertex
 – Put another way: the number of adjacent vertices

- Bainbridge (B) – Seattle (S) – East Side (E) – Mercer Island (M)

\[(M, E) \leftrightarrow (E, M)\]

\[
degree(S) = 3
\]
\[
degree(B) = 1
\]
Directed Graphs

• In directed graphs (sometimes called digraphs), edges have a direction.

• Thus, \((u, v) \in E\) does not imply \((v, u) \in E\).
 • Let \((u, v) \in E\) mean \(u \rightarrow v\).
 • Call \(u\) the source and \(v\) the destination.

• In-degree of a vertex: number of in-bound edges, i.e., edges where the vertex is the destination.

• Out-degree of a vertex: number of out-bound edges, i.e., edges where the vertex is the source.

\[\text{In-degree}(E) = 2\]
\[\text{Out-degree}(B) = 0\]
Self-Edges, Connectedness

• A **self-edge** a.k.a. a **loop** is an edge of the form \((u, u)\)
 • Depending on the use/algorithm, a graph may have:
 • No self edges
 • Some self edges
 • All self edges (often therefore implicit, but we will be explicit)

• A node can have a degree / in-degree / out-degree of **zero**

• A graph does not have to be **connected**
 • Even if every node has non-zero degree
More notation

For a graph $G = (V, E)$:

- $|V|$ is the number of vertices
- $|E|$ is the number of edges
 - Minimum?
 - Maximum for undirected?
 - Maximum for directed?
 - $|V|$, $|E|$ values:
 - Minimum
 - Maximum
 - Order matters for directed edges
 - $\mathcal{O}(n^2)$

If $(u, v) \in E$

- Then v is a neighbor of u, i.e., v is adjacent to u
- Order matters for directed edges
 - u is not adjacent to v unless $(v, u) \in E$

Example:

$V = \{S, M, E, B\}$
$E = \{(S, B), (S, E), (S, M), (M, E)\}$

$V = \{S, M, E, B\}$
$E = \{(S, B), (S, E), (S, M), (M, E)\}$

Is M adjacent to B? No
Is S adjacent to B? No
Is B adjacent to S? Yes!
Examples

Which would...

Use directed edges? Have self-edges? Be connected? Have 0-degree nodes?

(a) (b) (c) (d)

1. Web pages with links
2. Facebook friends
3. Methods in a program that call each other
4. Road maps (e.g., Google maps)
5. Airline routes
6. Family trees
7. Course pre-requisites
Weighted Graphs

• In a weighted graph, each edge has a weight a.k.a. cost
 • Typically numeric (most examples use ints)
 • Some graphs allow negative weights; many do not
Examples

What, if anything, might weights represent for each of these? Do negative weights make sense?

• Web pages with links
• Facebook friends
• Methods in a program that call each other
• Road maps (e.g., Google maps)
• Airline routes
• Family trees
• Course pre-requisites
Paths and Cycles

- A **path** is a list of vertices \([v_0, v_1, ..., v_n]\) such that \((v_i, v_{i+1}) \in E\) for all \(0 \leq i < n\). Said as “a path from \(v_0\) to \(v_n\)”

- A **cycle** is a path that begins and ends at the same node \((v_0 = v_n)\)

Example: [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]
Path Length and Cost

Path length: Number of *edges* in a path

Path cost: Sum of *weights* of edges in a path

Example:

\[
\text{let } P = [\text{Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle}]
\]

\[
\text{length}(P) = 5 \quad \text{cost}(P) = 11.5
\]
Simple Paths and Cycles

• A simple path repeats no vertices, except the first might be the last
e.g. [Seattle, Salt Lake City, San Francisco, Dallas] ←
 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

• Recall, a cycle is a path that ends where it begins
e.g. [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
 [Seattle, Salt Lake City, Seattle, Dallas, Seattle]

• A simple cycle is a cycle and a simple path
e.g. [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
Paths and Cycles in Directed Graphs

Example:

Is there a path from B to M? \(\text{No} \)

Does the graph contain any cycles? \(\text{Yes} \)
Undirected-Graph Connectivity

• An undirected graph is **connected** if for all pairs of vertices \((u, v)\), there exists a *path* from \(u\) to \(v\)

 ![Connected graph]

• An undirected graph is **complete**, a.k.a. **fully connected** if for *all* pairs of vertices \((u, v)\), there exists an *edge* from \(u\) to \(v\)

 ![Connected graph]
Directed-Graph Connectivity

- A directed graph is **strongly connected** if there is a path from every vertex to every other vertex.

- A directed graph is **weakly connected** if there is a path from every vertex to every other vertex *ignoring direction of edges*.

- A complete a.k.a. **fully connected** directed graph has an edge from every vertex to every other vertex, plus self edges.
Practice Time!

Let graph $G = (V, E)$ where

$V = \{a, b, c, d\}$

$E = \{(a, b), (b, c), (a, c), (b, d)\}$

How connected is G?

A. Disconnected
B. Weakly Connected
C. Strongly Connected
D. Complete / Fully Connected
Trees as Graphs

When talking about graphs, we say a **tree** is a graph that is:

- Connected
- Acyclic when you treat edges as undirected

Note that

- Edges can be undirected
- All trees are graphs, but not all graphs are trees
Rooted Trees

• We are more accustomed to **rooted trees** where:
 • We identify a unique root
 • We think of edges as directed: parent to children

• Given a tree, picking a root gives a unique rooted tree
 • The tree is just drawn differently
Rooted Trees

• We are more accustomed to rooted trees where:
 • We identify a unique root
 • We think of edges as directed: parent to children

• Given a tree, picking a root gives a unique rooted tree
 • The tree is just drawn differently
Directed Acyclic Graphs (DAGs)

- A **DAG** is a directed graph with no (directed) cycles
 - Every rooted directed tree is a DAG
 - But not every DAG is a rooted directed tree

- Every DAG is a directed graph
- But not every directed graph is a DAG
Examples

Which of our directed-graph examples do you expect to be a DAG?

• Web pages with links
• Methods in a program that call each other
• Airline routes
• Family trees
• Course pre-requisites
Density / Sparsity

• Recall: In an undirected graph, \(0 \leq |E| < |V|^2 \)
• Recall: In a directed graph: \(0 \leq |E| \leq |V|^2 \)
• So for any graph, \(O(|E|+|V|) \) is \(\mathcal{O}(|E|) + \mathcal{O}(|V|) = \mathcal{O}(|V|^2) \)
• Another fact: If an undirected graph is connected, then \(|V| - 1 \leq |E| \)

• Because \(|E| \) is often much smaller than its maximum size, we do not always approximate \(|E| \) as \(O(|V|^2) \)
 • This is a correct bound, it just is often not tight
 • If it is tight, i.e., \(|E| = \Theta(|V|^2) \) we say the graph is dense
 • More sloppily, dense means “lots of edges”
 • If \(|E| \) is \(O(|V|) \) we say the graph is sparse
 • More sloppily, sparse means “most possible edges missing”