CSE 373: Data Structures and Algorithms

Lecture 14: Introduction to Graphs

Instructor: Lilian de Greef Quarter: Summer 2017

Today

- Overview of Midterm
- Introduce Graphs
 - Mathematical representation
 - Undirected & Directed Graphs
 - Self edges
 - Weights
 - Paths & Cycles
 - Connectedness
 - Trees as graphs
 - DAGs
 - Density & Sparsity

Midterm: Statistics and Distribution

Midterm: Distribution by Problem

Hash Tables

There is a hash table implemented with linear probing that doubles in size every time its load factor is strictly greater than 1/2.

What is the worst-case condition for insert in this table?

What is the asymptotic worst-case running time to insert an item? (let n = # items in table)

What is the amortized running time to insert an item to this table?

$$\frac{n^2}{r} = O(r)$$

Hash Tables

Now we have a hash table implemented with separate chaining in which each chain stores its keys in sorted order.

What is the worst-case condition for insert in this table?

What is the asymptotic worst-case running time to insert an item into this table?

$$r \times O(n) = O(n^2)$$

Questions on Midterm?

- We're happy to go over answers with you!
- Come visit any of our office hours ©
- We encourage it! Mistakes are one of the best ways to learn.

Fun drawing on last page of a midterm:

Introducing: Graphs

Vertices, edges, and paths (oh my!)

Introductory Example

This representation is called a graph

In this example, locations (Seattle, Bainbridge Island, the East Side, and Mercer Island) are the vertice S

And the roads, bridges, and ferry lines are the

edges

Graphs

- A graph is a formalism for representing relationships among items
 - Very general definition because very general concept
- A graph is a pair G = (V, E)
 - A set of vertices, also known as $V = \{V_1, V_2, ..., V_n\}$
 - A set of edges

$$E = \{e_1, e_2, ..., e_m\}$$

- An edge "connects" the vertices
- Each edge $\boldsymbol{e}_{\underline{i}}$ is a pair of vertices

$$e_i = (V_{\delta_i}, V_k)$$

Graphs can be directed or undirected

$$V = \{S, M, E, B\}$$
 $E = \{(S, B), = (S, E), (S, E), (S, M), (M, E)\}$

 $(V = \{ characters \}, E = \{ romances \})$

Source: http://www.webhostingbuzz.com/blog/2015/02/10/superlove-marvelsromantic-relationships-mapped/

Undirected Graphs

- In undirected graphs, edges have no specific direction
 - Edges are always "two-way

- Thus, $(u, v) \in E$ implies $(v, u) \in E$
 - Only one of these edges needs to be in the set
 - The other is implicit, so normalize how you check for it
- Degree of a vertex: number of edges containing that vertex
 - Put another way: the number of adjacent vertices

$$(M, E) \longleftrightarrow (E, M)$$

$$degree(s) = \frac{3}{2}$$

$$degree(B) = 1$$

Directed Graphs

• In directed graphs (sometimes called digraphs), edges have a direction

or

- Thus, $(u, v) \in E$ does not imply $(v, u) \in E$.
 - Let $(u, v) \in E$ mean $u \rightarrow v$
 - Call u the source and v the destination
- In-degree of a vertex: number of in-bound edges, i.e., edges where the vertex is the destination
- Out-degree of a vertex: number of out-bound edges i.e., edges where the vertex is the source

$$in-degree(\mathbf{E}) = 2$$

Out-degree(
$$B$$
) = O

Self-Edges, Connectedness

- A self-edge a.k.a. a loop is an edge of the form (u, u)
 - Depending on the use/algorithm, a graph may have:
 - No self edges
 - Some self edges
 - All self edges (often therefore implicit, but we will be explicit)
- A node can have a degree / in-degree / out-degree of
- A graph does not have to be connected
 - Even if every node has non-zero degree

More notation

For a graph G = (V, E):

- | V | is the number of vertices
- | E | is the number of edges
 - Minimum?
 - Maximum for undirected?
 - Maximum for directed? $|V|^2 \in O(|V|^2)$ (assuming self-edges allowed, else subtract |V|)

000

- If $(u, v) \in E$
 - Then v is a neighbor of u, i.e., v is adjacent to u
 - Order matters for directed edges
 - u is not adjacent to v unless $(v, u) \in E$

Is M adjacent to B? NO

 $= \{S, M, E, B\}$

(S,E),

(S,M),

 (\mathbf{M}, \mathbf{E}) }

 $E = \{ (S, B),$

 $(n-1)+(n-2)+(n-3)\cdots$

Is **s** adjacent to **B**? NO

Is B adjacent to s? \sqrt{s}

Examples

Which would...

Use directed edges? Have self-edges? Be connected? Have 0-degree nodes?

- 1. Web pages with links (a, b, c)
- 2. Facebook friends V=USeVS E=Liendship (c, d)
 3. Methods in a program that call each other V= methods E= calls (a,b,c)
- 4. Road maps (e.g., Google maps) (, c)
- 5. Airline routes (a, [b], c)
- 6. Family trees (a c)
- 7. Course pre-requisites (a , c)

Weighted Graphs

- In a weighed graph, each edge has a weight a.k.a. cost
 - Typically numeric (most examples use ints)
 - Some graphs allow negative weights; many do not

Examples

What, if anything, might weights represent for each of these? • Web pages with links = boolemarks vs not boolemarks vs nisted.

• Facober 1 11

- Facebook friends
- Methods in a program that call each other
- Road maps (e.g., Google maps) distance
- · Airline routes time, oust, # passengers
- · Family trees type of relation
- Course pre-requisites

Paths and Cycles

- A path is a list of vertices $[v_0, v_1, ..., v_n]$ such that $(v_i, v_{i+1}) \in E$ for all $0 \le i < n$. Said as "a path from v_0 to v_n "
- A cycle is a path that begins and ends at the same node $(v_0 == v_n)$

Example: [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Path Length and Cost

Path length: Number of edges in a path

Path cost: Sum of weights of edges in a path

Example:

let P = [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Simple Paths and Cycles

- A simple path repeats no vertices, except the first might be the last e.g. [Seattle, Salt Lake City, San Francisco, Dallas] [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
- Recall, a cycle is a path that ends where it begins
 e.g. [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
 [Seattle, Salt Lake City, Seattle, Dallas, Seattle]
- A simple cycle is a cycle and a simple path e.g. [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

Paths and Cycles in Directed Graphs

Example:

Is there a path from \mathbf{B} to \mathbf{M} ?

Does the graph contain any cycles? $\sqrt{2}$

Undirected-Graph Connectivity

• An undirected graph is connected if for all pairs of vertices (u, v), there exists a path from u to v

• An undirected graph is complete, a.k.a. fully connected if for all pairs of vertices (u, v), there exists an edge from u to v

Directed-Graph Connectivity

- A directed graph is strongly connected if there is a path from every vertex to every other vertex
- A directed graph is **weakly connected** if there is a path from every vertex to every other vertex *ignoring direction of edges*
- A complete a.k.a. fully connected directed graph has an edge from every vertex to every other vertex

Practice Time!

Let graph
$$G = (V, E)$$

where

$$V = \{a, b, c, d\}$$

$$E = \{(a,b), (b,c), (a,c), (b,d)\}$$

How connected is G?

B. Weakly Connected

- C. Strongly Connected
- D. Complete / Fully Connected

Trees as Graphs

When talking about graphs, we say a **tree** is a graph that is:

- Connected
- Acyclic when you treat edges as undirected

Note that

- Edges can be undirected
- All trees are graphs, but not all graphs are trees

Rooted Trees

- We are more accustomed to rooted trees where:
 - We identify a unique root
 - We think of edges as directed: parent to children
- Given a tree, picking a root gives a unique rooted tree
 - The tree is just drawn differently

Rooted Trees

- We are more accustomed to rooted trees where:
 - We identify a unique root
 - We think of edges as directed: parent to children
- Given a tree, picking a root gives a unique rooted tree
 - The tree is just drawn differently

Directed Acyclic Graphs (DAGs)

- A DAG is a directed graph with no (directed) cycles
 - Every rooted directed tree is a DAG
 - But not every DAG is a rooted directed tree

- Every DAG is a directed graph
- But not every directed graph is a DAG

Examples

Which of our directed-graph examples do you expect to be a DAG?

- Web pages with links
- Methods in a program that call each other
- Airline routes
- Family trees
- Course pre-requisites

Density / Sparsity

- Recall: In an undirected graph, $0 \le |\mathbb{E}| < |\mathbb{V}|^2$
- Recall: In a directed graph: $0 \le |E| \le |V|^2$ So for any graph, O(|E|+|V|) is $O(|E|) + O(|V|) = O(|V|^2)$
- Another fact: If an undirected graph is connected, then $|V|-1 \le |E|$

- This is a correct bound, it just is often not tight
- If it is tight, i.e., $|\mathbb{E}|$ is $\theta(|\nabla|^2)$ we say the graph is dense
 - More sloppily, dense means "ots of edges"
- If $|\mathbb{E}|$ is $O(|\mathbb{V}|)$ we say the graph is sparse
 - More sloppily, sparse means "most possible edges wissim"

