CSE 373: Data Structures and Algorithms Lecture 13: Finish Binary Heaps

Instructor: Lilian de Greef Quarter: Summer 2017

Announcements

- Midterm on Friday
 - Will start at 10:50, will end promptly at 11:50 (even if you're late), so be early
 - Anything we've covered is fair game (including this lecture)
 - Only bring pencils and erasers
 - Turn off / silence and put away any devices (e.g. phone) before exam
- Section
 - Will go over solutions for select problems from practice set
 - Practice set posted on course webpage (under Sections)
 - Recommendation: do the practice problems, then use section to go over the questions you found hardest (there isn't enough time to cover all of them)
- Homework 3 grades come out today!
- Course feedback today! (anonymous, confidential, something I have set up)

Binary Trees Implemented with an Array

From node i:

left child: i*2
right child: i*2+1
parent: i/2

(wasting index 0 is convenient for the index arithmetic)

Judging the array implementation

Pros:

- Non-data space: just index 0 and unused space on right
 - In conventional tree representation, one edge per node (except for root), so *n*-1 wasted space (like linked lists)
 - Array would waste more space if tree were not complete
- Multiplying and dividing by 2 is very fast (shift operations in hardware)
- Last used position is just index

Cons:

• Same might-be-empty or might-get-full problems we saw with array-based stacks and queues (resize by doubling as necessary)

Pros outweigh cons: min-heaps almost always use array implementation

Heap insert:

- 1. Put new data in new location (preserve structure property)
- 2. **Percolate up:** (restore heap property)
 - If higher priority than parent, swap with parent
 - Repeat until parent is more important or reached root

Semi-Pseudocode: insert into binary heap

}

This pseudocode uses ints. In real use, you will have data nodes with priorities.

	10	20	80	40	60	85	99	700	50				
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Heap deleteMin:

- 1. Remove (and later return) item at root
- 2. "Move" the last item in bottom row to the root (preserve structure property)
- 3. Percolate down: (restore heap property)
 - If item has lower priority, swap with the most important child
 - Repeat until both children have lower priority or we've reached a leaf node

Semi-Pseudocode: deleteMin from binary heap

Example

- 1. insert (in this order): 16, 32, 4, 67, 105, 43, 2
- 2. deleteMin once

Example

- 1. insert (in this order): 16, 32, 4, 67, 105, 43, 2
- 2. deleteMin once

Other operations

- decreaseKey: given pointer to object in priority queue (e.g., its array index), lower its priority value by p
 - Change priority and percolate up
- increaseKey: given pointer to object in priority queue (e.g., its array index), raise its priority value by p
 - Change priority and percolate down
- remove: given pointer to object in priority queue (e.g., its array index), remove it from the queue
 - decreaseKey with $p = \infty$, then deleteMin

Running time for all these operations?

Build Heap

- Suppose you have *n* items to put in a new (empty) priority queue
 - Call this operation buildHeap
- *n* inserts
 - Only choice if ADT doesn't provide buildHeap explicitly
 - Run time:
- Why would an ADT provide this unnecessary operation?
 - Convenience
 - Efficiency: an O(n) algorithm
 - Common issue in ADT design: how many specialized operations

heapify (Floyd's Method)

- 1. Use *n* items to make any complete tree you want
 - That is, put them in array indices 1,...,n
- 2. Fix the heap-order property
 - Bottom-up: percolate down starting at nodes one level up from leaves, work up toward the root

heapify (Floyd's Method): Example

- 1. Use *n* items to make any complete tree you want
- 2. Fix the heap-order property from bottom-up

Which nodes break the heap-order property?

Why work from the bottom-up to fix them?

Why start at one level above the leaf nodes?

Where do we start here?

heapify (Floyd's Method): Example

heapify (Floyd's Method): Example

heapify (Floyd's Method)

```
void buildHeap() {
    for(int i = size/2; i>0; i--) {
        val = arr[i];
        hole = percolateDown(i, val);
        arr[hole] = val;
    }
}
```

But is it right? ... it "seems to work"

- Let's *prove* it restores the heap property
- Then let's prove its running time

Correctness

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
  }
}
```

Loop Invariant: For all j > i, arr[j] is higher priority than its children

- True initially: If j > size/2, then j is a leaf
 - Otherwise its left child would be at position > $\verb"size"$
- True after one more iteration: loop body and percolateDown make arr[i] higher priority than children without breaking the property for any descendants

So after the loop finishes, all nodes are less than their children

Efficiency

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
  }
}
```

Easier argument: buildHeap is

where *n* is size

- loop iterations
- Each iteration does one percolateDown, each is

This is correct, but there is a more precise ("tighter") analysis of the algorithm...

Efficiency void buildHeap() { for(i = size/2; i>0; i--) { val = arr[i]; hole = percolateDown(i,val); arr[hole] = val; } }

Better argument: buildHeap is

where *n* is size

- size/2 total loop iterations: O(n)
- 1/2 the loop iterations percolateDown at most
- 1/4 the loop iterations percolateDown at most
- 1/8 the loop iterations percolateDown at most
- ...
- ((1/2) + (2/4) + (3/8) + (4/16) + ...) < 2 (page 4 of Weiss)

Lessons from buildHeap

- Without providing buildHeap, clients can implement their own that runs in worst case
- By providing a specialized operation (with access to the internal data), we can do worst case
 - Intuition: Most data is near a leaf, so better to percolate down
- Can analyze this algorithm for:
 - Correctness: Non-trivial inductive proof using loop invariant
 - Efficiency:
 - First (easier) analysis proved it was $O(n \log n)$
 - Tighter analysis shows same algorithm is O(n)

Other branching factors for Heaps

d-heaps: have *d* children instead of 2

• Makes heaps shallower

Indices for 3-heap

Index	Children Indices				
1					
2					
3					
4					
5					

Example: 3-heap

- Only difference: three children instead of 2
- Still use an array with all positions from 1 ... heapSize

Wrapping up Heaps

- What are heaps a data structure for?
- What is it usually implemented with? Why?
- What are some example uses?