
Instructor:	Lilian	de	Greef
Quarter:	Summer	2017

CSE	373:	Data	Structures	and	Algorithms
Lecture	13:	Finish	Binary	Heaps

Announcements

• Midterm	on	Friday
• Will	start	at	10:50,	will	end	promptly	at	11:50	(even	if	you’re	late),	so	be	early
• Anything	we’ve	covered	is	fair	game	(including	this	lecture)
• Only	bring	pencils	and	erasers
• Turn	off	/	silence	and	put	away	any	devices	(e.g.	phone)	before	exam

• Section
• Will	go	over	solutions	for	select	problems	from	practice	set
• Practice	set	posted	on	course	webpage	(under	Sections)
• Recommendation:	do	the	practice	problems,	then	use	section	to	go	over	the	
questions	you	found	hardest	(there	isn’t	enough	time	to	cover	all	of	them)

• Homework	3	grades	come	out	today!
• Course	feedback	today!	(anonymous,	confidential,	something	I	have	set	up)

Binary	Trees	Implemented	with	an	Array
From	node	i:

left	child:	i*2
right	child:	i*2+1
parent:	i/2

(wasting	index	0	is	
convenient	for	the	
index	arithmetic)

GED

CB

A

J KH I

F

L

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Judging	the	array	implementation
Pros:
• Non-data	space:	just	index	0	and	unused	space	on	right

• In	conventional	tree	representation,	one	edge	per	node	(except	for	root),	
so	n-1	wasted	space	(like	linked	lists)

• Array	would	waste	more	space	if	tree	were	not	complete
• Multiplying	and	dividing	by	2	is	very	fast	(shift	operations	in	hardware)
• Last	used	position	is	just	index
Cons:
• Same	might-be-empty	or	might-get-full	problems	we	saw	with	array-based	
stacks	and	queues	(resize	by	doubling	as	necessary)

Pros	outweigh	cons:	min-heaps	almost	always	use	array	implementation

Heap	insert:
1. Put new data in new location (preserve structure property)
2. Percolate up: (restore heap property)

• If higher priority than parent, swap with parent
• Repeat until parent is more important or reached root

2

84

91057

6911

1

? 2
5

84

9107

6911

1

?

2

5

8

91047

6911

1?

2

Semi-Pseudocode:	insert into	binary	heap
void insert(int val) {

if(size==arr.length-1)
resize();

size++;
i=percolateUp(size,val);
arr[i] = val;

}

int percolateUp(int hole,
int val) {

while(hole > 1 &&
val < arr[hole/2])

arr[hole] = arr[hole/2];
hole = hole / 2;

}
return hole;

}

996040

8020

10

700 50

85

10 20 80 40 60 85 99 700 50

0 1 2 3 4 5 6 7 8 9 10 11 12 13

This	pseudocode uses	ints.		In	real	use,	
you	will	have	data	nodes	with	priorities.

Heap	deleteMin:
1. Remove (and later return) item at root
2. “Move” the last item in bottom row to the root (preserve structure property)
3. Percolate down: (restore heap property)

• If item has lower priority, swap with the most important child
• Repeat until both children have lower priority or we’ve reached a leaf node

84

91057

6911

3

34

9857

10

6911

?

11

4

9857

10

69

3 ?

Semi-Pseudocode:	deleteMin from	binary	heap
int deleteMin() {

if(isEmpty()) throw…
ans = arr[1];
hole = percolateDown

(1,arr[size]);
arr[hole] = arr[size];
size--;
return ans;

}

int percolateDown(int hole,
int val) {

while(2*hole <= size) {
left = 2*hole;
right = left + 1;
if(right > size ||

arr[left] < arr[right])
target = left;

else
target = right;

if(arr[target] < val) {
arr[hole] = arr[target];
hole = target;

} else
break;

}
return hole;

}

996040

8020

10

700 50

85

10 20 80 40 60 85 99 700 50

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Example
1. insert (in	this	order):	16,	32,	4,	67,	105,	43,	2
2. deleteMin once

0 1 2 3 4 5 6 7

Example
1. insert (in	this	order):	16,	32,	4,	67,	105,	43,	2
2. deleteMin once

0 1 2 3 4 5 6 7

2

32 4

164310567

Other	operations

• decreaseKey:	given	pointer	to	object	in	priority	queue	(e.g.,	its	array	index),	
lower	its	priority	value	by	p

• Change	priority	and	percolate	up

• increaseKey:	given	pointer	to	object	in	priority	queue	(e.g.,	its	array	index),	
raise	its	priority	value	by	p

• Change	priority	and	percolate	down

• remove:	given	pointer	to	object	in	priority	queue	(e.g.,	its	array	index),	remove	it	
from	the	queue

• decreaseKey with	p =	¥,	then	deleteMin

Running	time	for	all	these	operations?

Build	Heap

• Suppose	you	have	n items	to	put	in	a	new	(empty)	priority	queue
• Call	this	operation	buildHeap

• n inserts
• Only	choice	if	ADT	doesn’t	provide	buildHeap explicitly
• Run	time:	

• Why	would	an	ADT	provide	this	unnecessary	operation?
• Convenience
• Efficiency:	an	O(n)	algorithm
• Common	issue	in	ADT	design:	how	many	specialized	operations

heapify (Floyd’s	Method)
1. Use	n items	to	make	any	complete	tree	you	want	

• That	is,	put	them	in	array	indices	1,…,n

2. Fix	the	heap-order	property
• Bottom-up:	percolate	down	starting	at	nodes	one	level	up	from	leaves,	

work	up	toward	the	root

heapify (Floyd’s	Method):	Example
1. Use	n items	to	make	any	complete	

tree	you	want	
2. Fix	the	heap-order	property	

from	bottom-up

6718

92103

115

12

4

Which	nodes	break	the	heap-order	property?

Why	work	from	the	bottom-up	to	fix	them?

Why	start	at	one	level	above	the	leaf	nodes?

Where	do	we	start	here?

-

-

heapify (Floyd’s	Method):	Example

6718

92103

115

12

4 68

923

4

heapify (Floyd’s	Method):	Example

heapify (Floyd’s	Method)

But	is	it	right?	
• Let’s	prove it	restores	the	heap	property	
• Then	let’s	prove its	running	time	

void buildHeap() {
for(int i = size/2; i>0; i--) {
val = arr[i];
hole = percolateDown(i, val);
arr[hole] = val;

}
}

… it	“seems	to	work”

Correctness

Loop	Invariant: For	all	j >	i,		arr[j] is	higher	priority	than	its	children
• True	initially:	If	j >	size/2,		then	j is	a	leaf

• Otherwise	its	left	child	would	be	at	position	>	size

• True	after	one	more	iteration:	loop	body	and	percolateDownmake	arr[i]
higher	priority	than	children	without	breaking	the	property	for	any	descendants

So	after	the	loop	finishes,	all	nodes	are	less	than	their	children

void buildHeap() {
for(i = size/2; i>0; i--) {
val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;

}
}

Efficiency

Easier	argument:
• loop	iterations
• Each	iteration	does	one	percolateDown,	each	is	

This	is	correct,	but	there	is	a	more	precise	(“tighter”)	analysis	of	the	
algorithm…

void buildHeap() {
for(i = size/2; i>0; i--) {
val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;

}
}

buildHeap is	 where	n is	size

Efficiency

Better	argument:
• size/2 total	loop	iterations:	O(n)
• 1/2	the	loop	iterations	percolateDown at	most
• 1/4	the	loop	iterations	percolateDown at	most
• 1/8	the	loop	iterations	percolateDown at	most
• …	
• ((1/2)	+	(2/4)	+	(3/8)	+	(4/16)	+	…)	<	2			(page	4	of	Weiss)	

void buildHeap() {
for(i = size/2; i>0; i--) {
val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;

}
}

i
2ii=1

∞

∑ = 2

buildHeap is	 where	n is	size

Lessons	from	buildHeap

• Without	providing	buildHeap,	clients	can	implement	their	own	
that	runs	in worst	case

• By	providing	a	specialized	operation	(with	access	to	the	internal	data),	
we	can	do	 worst	case

• Intuition:	Most	data	is	near	a	leaf,	so	better	to	percolate	down

• Can	analyze	this	algorithm	for:
• Correctness:	Non-trivial	inductive	proof	using	loop	invariant
• Efficiency:

• First	(easier)	analysis	proved	it	was	O(n log n)
• Tighter	analysis	shows	same	algorithm	is	O(n)

-

Other	branching	factors	for	Heaps

d-heaps:	have	d children	instead	of	2
• Makes	heaps	shallower

Example:	3-heap
• Only	difference:	three	children	instead	of	2
• Still	use	an	array	with	all	positions	from	
1	…	heapSize

Index Children	Indices

1

2

3

4

5

… …

Indices	for	3-heap

Wrapping	up	Heaps

• What	are	heaps	a	data	structure	for?

• What	is	it	usually	implemented	with?
Why?

• What	are	some	example	uses?

