CSE 373: Data Structures and Algorithms
Lecture 13: Finish Binary Heaps

Instructor: Lilian de Greef
Quarter: Summer 2017

Today

* Announcements

* Binary Heaps
* Wrap up array representation of tree
* Floyd’s Method of buildTree
* d-heaps

Announcements

* Midterm on Friday
» Will start at 10:50, will end promptly at 11:50 (even if you’re late), so be early
* Anything we’ve covered is fair game (including this lecture)
* Only bring pencils and erasers
* Turn off / silence and put away any devices (e.g. phone) before exam

* Section
* Will go over solutions for select problems from practice set
* Practice set posted on course webpage (under Sections)

 Recommendation: do the practice problems, then use section to go over the
questions you found hardest (there isn’t enough time to cover all of them)

* Homework 3 grades come out today!
* Course feedback today! (anonymous, confidential, something | have set up)

A cool MyClient!

Welcome to Word Association Game : (enter "exit"):
Guess the association.

Word : dirt free

1 : capable

2 : superficiality

3 : dainty

Enter (1 ,2 or 3)

>>>3

Correct!

Points : 1

Word : guts

1 : strength

2 : brass

3 : energid
Enter (1 ,2 or 3)
>>>2

Strike : 1

Correct answer was strength

Word : avian

1 : see life

2 : nesting

3 : be a success
Enter (1 ,2 or 3)
>>>

Another cool MyClient!

Welcome to "Let's Keep It Short!"

large_thesaurus.txt
Please enter the text you would like to keep it short (enter "exit" to exit):
(Here is an example sentence to show off this cool program!

Here you go! This should keep you under the word limit (if there is one)!

<) now an type mot to fix off OK program!

Please enter the text you would like to keep it short (enter "exit" to exit):
(Entertaining purple elephants give children enjoyable presents. |
Here you go! This should keep you under the word limit (if there is one)!

fun rod elephants be get fair presents.

Please enter the text you would like to keep it short (enter "exit" to exit):

[I hope my instruction of the abstraction and comparison between data structures]
is illuminating.

Here you go! This should keep you under the word limit (if there is one)!

Please enter the text you would like to keep it short (enter "exit" to exit):

Finishing up Binary Heaps

Data Structure for Priority Queue, implemented with arrays!

Binary Trees Implemented with an Array

°) From node 1i:
e G
d left child: 1 *2
Z G right child: 1 *2+1
G4 < O C ' parent: 1/2

index arithmetic)

DlICIoE e |6 T d|\C|L

® 9 ©
0 \ ((wasting index O is
’ @ b @ @ convenigent for the
A
1

2 3 4 5 6 7 8 9 10 11 12

13

daton T =S
: : : ~ WA
Judging the array implementation ui/~=<gs" \ 3

Pros:

* Non-data space: just index 0 and unused space on right T

* In conventional tree representation, one edge per node (except for root),
so n-1 wasted space (like linked lists)

* Array would waste more space if tree were not complete «— Con
* Multiplying and dividing by 2 is very fast (shift operations in hardware)
* Last used position is just index

Cons:

* Same might-be-empty or might-get-full problems we saw with array-based
stacks and queues (resize by doubling as necessary)

Pros outweigh cons: min-heaps almost always use array implementation

Heap 1nsert: —

1.
2.

l/k : (o wrtr” \/oL(U\,Q
A Qﬁf’ heews %\,\M/
ey
Put new data in new location (preserve structure property)

Percolate up: (restore heap property) WA \A 2a r : lmrya
« If higher priority than parent, swap with parent —_—

* Repeat until parent is more important or reached root

Semi-Pseudocode: insert into binary heap

(C
void insert(int wval) { int percolateUp (int hole, ch*‘l({}
(size==arr.length-1) int val) { at V®
resize () ; (hole > 1 && or e
, ! val < arrl[hole/2]) . va/
slzet+t; arr[hole] = arrl[hole/2]; k‘& ‘

i=percolateUp(size,val); hole = hole / 2; e?y\ovvk

arr[i] = wval; })7
hole;

This pseudocode uses ints. In real use,
you will have data nodes with priorities.

Heap deleteMin:

1. Remove (and later return) item at root
2. “Move’ the last item in bottom row to the root (preserve structure property)

3. Percolate down: (restore heap property)
« If item has lower priority, swap with the most important child
* Repeat until both children have lower priority or we've reached a leaf node

Semi-Pseudocode: deleteMin from binary heap

int deleteMin () {

int percolateDown (int hole,

. int val) {

(eSO (2*hole <= size) {
ans = arel]) ~left = 2*hole; N __ % Y™ &
hole = percolateDown —~>right = left + 1;

(1,arr[size]); (rig?i ; ?ize F?f’h .
_ : . arr[left] < arr[right g
aFr[hole] = arr[size]; target = left;
size--;
ans; target = right; <—

} (arr[target] < wval) {
arr[hole] = arr[target];
hole = target;

}
}
hole;
}
85 | 99 |700 }(
6 7 8 9 10 11 12 13

e

ud”

Example

1. insert (inthis order): 16, 32, 4, 67, 105, 43, 2

2. deleteMin onk{cﬁ% éq '
% 3| L |CF|lo5| 4% /Z/
o 1 2 3 4 5 6 7

Example

1. insert (inthis order): 16, 32, 4, 67, 105, 43, 2
2. deleteMin once \Q

Z/ SN SIGAII VA /}K"
> 2
A

0

f/@@\

B @°
J

Other operations (Bonys M“)‘M‘\O\\B

 decreaseKey: given pointer to object in priority queue (e.g., its array index),
lower its priority value by p

e Change priority and percolate up

* increaseKey: given pointer to object in priority queue (e.g., its array index),
raise its priority value by p

e Change priority and percolate down

* remove: given pointer to object in priority queue (e.g., its array index), remove it
from the queue

* decreaseKey with p=o, thendeleteMin

Running time for all these operations?

Build Heap

» Suppose you have n items to put in a new (empty) priority queue
 Call this operation buildHeap

*ninserts
* Only choice if ADT doesn’t provide buildHeap explicitly

* Run time: O(V\ %05\/\

* Why would an ADT provide this unnecessary operation? Lw
« Convenience [<<\; [ood 5§ /VKCY 6(
M(/\ Z o/

* Efficiency: an O(n) algorithm &
 Common issue in ADT design: how many specialized operations

heapify (Floyd’s Method)

. Tuv
1. Use n items to make any complete tree you want | 51"V T
 Thatis, put them in array indices 1,...,n <‘(D\N M\/

2. Fix the heap-order property

 Bottom-up: percolate down starting at nodes one level up from leaves,
work up toward the root

heapify (Floyd’s Method): Example

lo . - .
1. Use nitems to make any complete Q) S) { ’—S
tree you want

2. Fix the heap-order property
from bottom-up

Which nodes break the heap-order property? =

Why work from the bottom-up to fix them?
Save ‘e d Losr L

/Toy;(zf‘,wv\ S sQM a S W\WV>

Why start at one IeveI\NBove the leaf nodes? /‘
AN OYO1O10]O,

Where do we start here?

{\
\mﬁ’k V\OL(

>

heapify (Floyd’s Method): Example

heapify (Floyd’s Method): Example

A
TA 2N
s

OJOIOIOIOK

heapify (Floyd’s Method): Example

R
Apge

ROJIOIOIO

heapify (Floyd’s Method): Example

heapify (Floyd’s Method)

_ /7
void buildHea
(ing i = size/27N\i>0; i--) { ?
val = d."I:_L[J'_]; { /\Q/\
hole = percolateDown{d ; :

arr[hole] = val;
}
} SU(E“’* 28 Faram%
o (o s \ea C

But is it right? ... it “seems to work”
* Let’s prove it restores the heap property <— (Comrz ctwnes S“)
* Then let’s prove its running time <— (E,C,C(C(Qv\c\/>

’\7foooc \07

Correctness Use 1o ckion
o)
void buildHeap() { Tnawnc .
(i = size/2; 1i>0; i--) { —/
val = arr[i];
hole = percolateDown (i,val);
arr[hole] = wval;

}
}

Loop Invariant: Forall 7 > 1, arr []j] is higher priority than its children

* True initially: If 3 > size/2, then j is a leaf

* Otherwise its left child would be at position > size

* True after one more iteration: loop body and percolateDown make arr [i]
higher priority than children without breaking the property for any descendants

So after the loop finishes, all nodes are less than their children

Efficiency

void buildHeap() { M‘”‘W' Aol g
(i = size/2; i>0; i--) | Asyrapratic Amery 57
val = arr[i]; WMaanS LI e ety
hole = percolateDown (i,val) ; at N—>0°
arr[hole] = val; (rm((7 REALLY \ﬂ'\\(cgg
} \mlv.vs oL n
} QW +L\L WORST cast

Easier argument: buildHeapis Oln 102) V\) wherenis size
. O(size/2> loop iterations <— O(n)
* Each iteration does one percolateDown, eachis O (/(433 m>

This is correct, but there is a more precise (“tighter”) analysis of the
algorithm...

Efficiency

void buildHeap () {

(i = size/2; i>0; i--) {
val = arr[i];
hole = percolateDown (i,val) ;
arr[hole] = wval;

}
}

Better argument: buildHeapis @(nw wherenis size

size/2 total loop iterations: O(n)

1/2 the loop iterations percolateDown at most 1 Step
1/4 the loop iterations percolateDown at most 2 steps
1/8 the loop iterations percolateDown at most > SJ@PS

S i

((1/2) +(2/4) + (3/8) + (4/16) + ...) < 2 (page 4 of Weiss)

=5 At pest 2% (si2e /7)) Hotal Ym,,,\& hff ‘»\m

Lessons from buildHeap

e Without providing buildHeap, clients can implement their own
that runs in O(mf»@ﬂ} worst case

* By providing a specialized operation (with access to the internal data),
we cando O (v\ worst case
* Intuition: Most data is near a leaf, so better to percolate down

e Can analyze this algorithm for:
* Correctness: Non-trivial inductive proof using loop invariant
* Efficiency:
* First (easier) analysis proved it was O(n 1og n)
* Tighter analysis shows same algorithm is O(n)

Other branching factors for Heaps

d-heaps: have d children instead of 2
* Makes heaps shallower

PN

Example: 3-heap
* Only difference: three children instead of 2

* Still use an array with all positions from
1 ... heapSize

Indices for 3-heap

Index | Children Indices
1 Z, 3,4
2 = C,)?L
3 ¥ A 1o
M LA R
5 iy (516

Wrapping up Heaps
Priovit, Quaus ADT

* What are heaps a data structure for?

* What is it usually implemented with? A v oz\/S “
Why? g?@& O\V\O(T &((«GdawCy (é\ﬁ s 4 W&(ohy)

* What are some example uses? b B
(I’(L leave ‘l"z\o\‘% AaS AL~ QXRFr (S ac‘rv Vo v>

