CSE 373: Data Structures and Algorithms
Lecture 12: Binary Heaps

Instructor: Lilian de Greef
Quarter: Summer 2017



Announcements

* Midterm on Friday
* Practice midterms on course website
* Note that some may cover slightly different material
* Will start at 10:50, will end promptly at 11:50 (even if you’re late), so be early

* Will have homework 3 grades back before midterm

 Reminder: course feedback session on Wednesday



Priority Queue ADT

Meaning:
A priority queue holds compare-able data
* Key property:
deleteMin returns and deletes the item with the highest priority
(can resolve ties arbitrarily)

Operations:

* deleteMin

: }n;erz = insert ™12 18 deleteMin > &
1smmpty 45 &3




Finding a good data structure

Will show an efficient, non-obvious data structure for this ADT
But first let’s analyze some “obvious” ideas for n data items

data insert algorithm / time deleteMin algorithm / time
unsorted array add at end search

unsorted linked list add at front search

sorted circular array search / shift move front

sorted linked list put in right place remove at front

binary search tree put in right place leftmost

AVL tree put in right place leftmost



Our data structure

A binary min-heap (or just binary heap or just heap) has:
 Structure property:

* Heap property: The priority of every (non-root) node is less important than
the priority of its parent

So:
Where is the highest-priority item?
Where is the lowest priority?
What is the height of a heap with n items?



deleteMin: Step #1

©,



deleteMin: Step #2 (Keep Structure Property)

O Want to keep structure property



deleteMin: Step #3

O Want to restore heap property



deleteMin: Step #3 (Restore Heap Property)

Percolate down:

« Compare priority of item with its children

« If item has lower priority, swap with the most important child

» Repeat until both children have lower priority or we’ve reached a leaf node

What is the run time?



deleteMin: Run Time Analysis

* Run time is
* Aheapisa

* So its height with n nodes is

e Sorun time of deleteMin is



insert: Step #1




insert: Step #2




insert: Step #2 (Restore Heap Property)

Percolate up:

* Put new data in new location

 |If higher priority than parent, swap with parent

* Repeat until parent is more important or reached root

What is the running time?



Summary: basic idea for operations

findMin: return root.data

deleteMin:

1. answer = root.data

2. Move right-most node in last row to root
to restore structure property

3. “Percolate down” to restore heap property

insert:

1. Put new node in next position on bottom
row to restore structure property

2. “Percolate up” to restore heap property

Overall strategy:
1. Preserve structure property
2. Restore heap property



Binary Heap

* Operations
* O(logn) insert
* O(log n) deleteMin worst-case
* Very good constant factors

 |[fitems arrive in random order, then insert is O(1) on average



Summary: Priority Queue ADT

* Priority Queue ADT:

* insert comparable object,
* deleteMin

* Binary heap data structure:
* Complete binary tree
* Each node has less important

(40) (50 (&5 ()
priority value than its parent (700) (50)

 insert and deleteMin operations = O(height-of-tree)=0(1og n)
* insert: putatnew last position in tree and percolate-up

* deleteMin: remove root, put last element at root and
percolate-down



Binary Trees Implemented with an Array

° From node i:

left child: 1 *2

G e right child: 1 *2+1

' parent: i/2

o~
@ O ©
/ \ / \ (wasting index O is
@ @ @ @ convenient for the

index arithmetic)

13




Judging the array implementation

Pros:

* Non-data space: just index 0 and unused space on right

* In conventional tree representation, one edge per node (except for root),
so n-1 wasted space (like linked lists)

* Array would waste more space if tree were not complete
* Multiplying and dividing by 2 is very fast (shift operations in hardware)
* Last used position is just index

Cons:

* Same might-be-empty or might-get-full problems we saw with array-based
stacks and queues (resize by doubling as necessary)

Pros outweigh cons: min-heaps almost always use array implementation



Practice time!

Starting with an empty array-based binary heap, which is the result after
1. insert (in this order): 16, 32, 4, 67, 105, 43, 2

2. deleteMin once

A) C)
4 15 32 43 67 | 105 4 32 16 43 | 105 | 67
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6
B) D)
16 32 4 67 | 105 | 43 4 32 16 67 | 105 | 43




(extra space for your scratch work a notes)



Semi-Pseudocode: insert into binary heap

void insert(int wval) { int percolateUp (int hole,
(size==arr.length-1) int val) {
resire () ¢ (hole > 1 &&

. ! val < arr[hole/2])
sizet+; arr[hole] = arr[hole/2];
i=percolateUp (size,val); hole = hole / 2;
arr[i] = wval; }

hole;
} )
(10)
G ) This pseudocode uses ints. In real use,

you will have data nodes with priorities.

10 | 20 | 80 | 40 | 60 | 85 | 99 | 700 | 50




Semi-Pseudocode: deleteMin from binary heap

int percolateDown (int hole,

int deleteMin () {

int val) {

(1sEmpty ()) (2*hole <= size) {
ans = arr[1l]; left = 2*hole;
hole = percolateDown right = left + 1;
(1,arr[sizel); (right > size .
s hele] = e [aine] arr[left] < arr[right])
. ! target = left;
size-—;
ans; target = right;
} (arr[target] < wval) {
arr[hole] = arr[target];
(10) hole = target;
(20) (802 }
(40) €& 6 @D
@D GO notes
10 | 20 | 80 | 40 | 60 | 85 | 99 | 700 | 50
0 1 2 3 4 5 6 7 8 9 10 11 12 13




Example

1. insert (inthis order): 16, 32, 4, 67, 105, 43, 2
2. deleteMin once




Example

1. insert (inthis order): 16, 32, 4, 67, 105, 43, 2
2. deleteMin once




Other operations

 decreaseKey: given pointer to object in priority queue (e.g., its array index),
lower its priority value by p

e Change priority and percolate up

* increaseKey: given pointer to object in priority queue (e.g., its array index),
raise its priority value by p

e Change priority and percolate down

* remove: given pointer to object in priority queue (e.g., its array index), remove it
from the queue

* decreaseKey with p=o, thendeleteMin

Running time for all these operations?



Build Heap

» Suppose you have n items to put in a new (empty) priority queue
 Call this operation buildHeap

*ninserts
* Only choice if ADT doesn’t provide buildHeap explicitly

* Why would an ADT provide this unnecessary operation?
* Convenience
* Efficiency: an O(n) algorithm
 Common issue in ADT design: how many specialized operations



heapify (Floyd’s Method)

1. Use n items to make any complete tree you want
 Thatis, put them in array indices 1,...,n

2. Fix the heap-order property

 Bottom-up: percolate down starting at nodes one level up from leaves,
work up toward the root



heapify (Floyd’s Method): Example

1. Use nitems to make any complete
tree you want

2. Fix the heap-order property
from bottom-up

Which nodes break the heap-order property?

Why work from the bottom-up to fix them?

Why start at one level above the leaf nodes? : '\ : '\ /‘

OO

Where do we start here?



heapify (Floyd’s Method): Example

N
A
Wik

OO



heapify (Floyd’s Method): Example

N
AR
Apge

OJOITIO



heapify (Floyd’s Method): Example

N
A A
Wik

OO



heapify (Floyd’s Method): Example

A
A
Wik

OO



heapify (Floyd’s Method)

void buildHeap () {

(int 1 = size/2; i>0; i--) {
val = arr[i];
hole = percolateDown (i, val)
arr[hole] = val;

}

But is it right? ... it “seems to work”
* Let’s prove it restores the heap property
* Then let’s prove its running time



Correctness

void buildHeap () {

(i = size/2; 1i>0; i--) {
val = arr[i];
hole = percolateDown (i,val);
arr[hole] = wval;

}
}

Loop Invariant: Forall 7 > 1, arr []j] is higher priority than its children

* True initially: If 3 > size/2, then j is a leaf

* Otherwise its left child would be at position > size

* True after one more iteration: loop body and percolateDown make arr [i]
higher priority than children without breaking the property for any descendants

So after the loop finishes, all nodes are less than their children



Efficiency

void buildHeap() {
(i = size/2; 1i>0; i--) {
val = arr[i];
hole = percolateDown (i,val);
arr[hole] = wval;
}
}

Easier argument: buildHeapis wherenis size
. loop iterations
* Each iteration does one percolateDown, each is

This is correct, but there is a more precise (“tighter”) analysis of the
algorithm...



Efficiency

void buildHeap() {
(i = size/2; i>0; i--) {
val = arr[i];
hole = percolateDown (i,val) ;
arr[hole] = wval;
}
}

Better argument: buildHeapis wherenis size
» size/2 total loop iterations: O(n)

* 1/2 the loop iterations percolateDown at most

1/4 the loop iterations percolateDown at most

1/8 the loop iterations percolateDown at most

((1/2) + (2/4) + (3/8) + (4/16) + ..) <2 (page 4 of Weiss) Ezi 2



Lessons from buildHeap

e Without providing buildHeap, clients can implement their own
that runs in worst case

* By providing a specialized operation (with access to the internal data),
we can do worst case
* Intuition: Most data is near a leaf, so better to percolate down

e Can analyze this algorithm for:
* Correctness: Non-trivial inductive proof using loop invariant
* Efficiency:
* First (easier) analysis proved it was O(n 1og n)
* Tighter analysis shows same algorithm is O(n)



Other branching factors for Heaps

d-heaps: have d children instead of 2

Indices for 3-hea
* Makes heaps shallower P

Index | Children Indices

1
2
3
Example: 3-heap 4
* Only difference: three children instead of 2 S

* Still use an array with all positions from

1 ... heapSize




Wrapping up Heaps
* What are heaps a data structure for?

* What is it usually implemented with?
Why?

* What are some example uses?



