CSE 373: Data Structures and Algorithms
 Lecture 12: Binary Heaps

Instructor: Lilian de Greef
Quarter: Summer 2017

Today

- Announcements
- Binary Heaps
- insert
- delete
- Array representation of tree
- Floyd's Method of buildTree
- d-heaps

Announcements

- Midterm on Friday
- Practice midterms on course website
- Note that some may cover slightly different material
- Will start at 10:50, will end promptly at 11:50 (even if you're late), so be early
- Will have homework 3 grades back before midterm
- Reminder: course feedback session on Wednesday

Priority Queue ADT

Like a Queue, but with priorities for each element.

Priority Queue ADT

Meaning:

- A priority queue holds compare-able data
- Key property: deleteMin returns and deletes the item with the highest priority (can resolve ties arbitrarily)

Operations:

- deleteMin
- insert
- isEmpty

Finding a good data structure

Will show an efficient, non-obvious data structure for this ADT
But first let's analyze some "obvious" ideas for n data items
data
unsorted array
unsorted linked list
sorted circular array
sorted linked list
binary search tree
AVL tree
insert algorithm / time add at end $O(1)$ add at front $O(1)$ search / shift $O(n)$ put in right place $O(n)$ put in right place $O(n)$ put in right place $O(\log n)$
deleteMin algorithm / time
search $O(n)$
search $O(n)$
move front $O(1)$
remove at front $O(1)$
leftmost $O(n)$
leftmost $\bigcirc(\log n)$

Binary Heaps

Data Structure for Priority Queue

Our data structure binary heap

A binary min-heap (or just binary heap or just heap) has:

- Structure property: a complete binary tree
- Heap property: The priority of every (non-root) node is less important than the priority of its parent

So: Where is the highest-priority item? the root?

- Where is the lowest priority? sone where in the leaves
-What is the height of a heap with n items? lug n (complete tree)
deleteMin: Step \#1

1. Delete land later return) the value at root

Now we have a "hole" at the root
\rightarrow replace it with another node
deleteMin: Step \#2 (Keep Structure Property)
(a complete binary tree)

Want to keep structure property S
2. Pick last node on the bottom row and "move" it to the "hole"
deleteMin: Step \#3

Want to restore heap property
3. "Percolate down
\rightarrow If lower priority than child, swap the most important child

deleteMin: Step \#3 (Restore Heap Property)

Percolate down:

- Compare priority of item with its children
- If item has lower priority, swap with the most important child
- Repeat until both children have lower priority or we've reached a leaf node

deleteMin: Run Time Analysis
- Run time is O (hight hemp)

- A heap is a complete tree
- So its height with n nodes is $\log h$

- So run time of deleteMin is
$O(\log n)$

insert: Step \#1
Maintain Structure property

Put data into next available spot (end of last row)
to maintain structure (complete binary tree)

insert: Step \#2 Restore Heap Property

insert: Step \#2 (Restore Heap Property)

Percolate up:

- Put new data in new location «(mairtair strvcture proferty)
- If higher priority than parent, swap with parent
- Repeat until parent is more important or reached root

Summary: basic idea for operations

findMin: return root.data
deleteMin:

1. answer = root.data
2. Move right-most node in last row to root to restore structure property
3. "Percolate down" to restore heap property
insert:
4. Put new node in next position on bottom row to restore structure property
5. "Percolate up" to restore heap property

Overall strategy:

1. Preserve structure property
2. Restore heap property

Binary Heap

- Operations
- $O(\log n)$ insert

- Very good constant factors
- If items arrive in random order, then insert is $O(1)$ on average 75% of values are in the bottom 2 rows

Summary: Priority Queue ADT

- Priority Queue ADT:
- insert comparable object,
- deleteMin

- Binary heap data structure:
- Complete binary tree
- Each node has less important priority value than its parent

- insert and deleteMin operations $=O$ (height-of-tree) $=O(\log n)$
- insert: put at new last position in tree and percolate-up
- deleteMin: remove root, put last element at root and percolate-down

Binary Trees Implemented with an Array

From node i:
left child: i*2
right child: $i * 2+1$
parent: i/2 <
(wasting index 0 is convenient for the index arithmetic)

Judging the array implementation

Pros:

- Non-data space: just index 0 and unused space on right

- In conventional tree representation, one edge per node (except for root), so $n-1$ wasted space (like linked lists)
- Array would waste more space if tree were not complete \leftarrow (Con)
- Multiplying and dividing by 2 is very fast (shift operations in hardware)
- Last used position is just index

Cons:

- Same might-be-empty or might-get-full problems we saw with array-based stacks and queues (resize by doubling as necessary)

Pros outweigh cons: min-heaps almost always use array implementation

Practice time!
Starting with an empty array-based binary heap, which is the result after

1. insert (in this order): $16,32,4,67,105,43,2$
2. deleteMin once

A)

	4	16	32	43	67	105	
0	1	2	3	4	5	6	7

B)

	16	32	4	67	105	43	
0	1	2	3	4	5	6	7

C)

	4	32	16	43	105	67	
0	1	2	3	4	5	6	7

Semi-Pseudocode: insert into binary heap

Semi-Pseudocode: deleteMin from binary heap

```
    int deleteMin() {
        if(isEmpty()) throw...
ans = arr[1];
        hole = percolateDown
            (1,arr[size]);
    arr[hole] = arr[size];
    size--;
    return ans;
}
```

```
```

int percolateDown(int hole,

```
```

int percolateDown(int hole,
int val) {
int val) {
while(2*hole <= size) \& N Not Leaf
while(2*hole <= size) \& N Not Leaf
right = left + 1; «chilotreh

```
    right = left + 1; «chilotreh
```



```
    if(right > size |
```

 if(right > size |
 arr[left] < arr[right]) & chech
 arr[left] < arr[right]) & chech
 target = left;
 target = left;
 else
 else
 priori-y
 priori-y
 target = right;
 target = right;
 if(arr[target] < val) {
 if(arr[target] < val) {
 lorr[hole]= arr[target]; { swap
 lorr[hole]= arr[target]; { swap
 } else
 } else
 break;
    ```
```

 break;
    ```
```


| \begin{tabular}{l}
\hline
\end{tabular} $\mathbf{1 0}$

Example

1. insert (in this order): $16,32,4,67,105,43,2 \leftarrow$ percolate V_{p}
2. deleteMin once

Why AVL Trees cannot implement binary heaps via counter example:

