CSE 373: Data Structures and Algorithms
Lecture 12: Binary Heaps

Instructor: Lilian de Greef
Quarter: Summer 2017

Today

* Announcements

* Binary Heaps
* insert
* delete
* Array representation of tree
* Floyd’s Method of buildTree
* d-heaps

Announcements

* Midterm on Friday
* Practice midterms on course website
* Note that some may cover slightly different material
* Will start at 10:50, will end promptly at 11:50 (even if you’re late), so be early

* Will have homework 3 grades back before midterm

 Reminder: course feedback session on Wednesday

Priority Queue ADT

Like a Queue, but with priorities for each element.

Priority Queue ADT

Meaning:
A priority queue holds compare-able data
* Key property:
deleteMin returns and deletes the item with the highest priority
(can resolve ties arbitrarily)

Operations:

* deleteMin

: }n;erz = insert ™12 18 deleteMin > &
1smmpty 45 &3

Finding a good data structure

Will show an efficient, non-obvious data structure for this ADT
But first let’s analyze some “obvious” ideas for n data items

data insert algorithm / time deleteMin algorithm / time
unsorted array addatend O (1W search D(V\)
unsorted linked list add at front O (f) search (O (i~

sorted circular array search / shift O (n\ move front () fﬁ)
sorted linked list put in right place O(?'\) remove at front (O (D
binary search tree put in right place O (:/\7 leftmost O CV\)

AVL tree put in right place O(Lo Sv) leftmost (D ((»5 ,,D

Binary Heaps

Data Structure for Priority Queue

Our data structure \o\\f\m7 \I\UVYD

A binary min-heap (or just b/nary heap or just heap) has:
e Structure property: o cotnyplete Lina ry 2

* Heap property: The priority of every'(non root) node is less important than

the priority of its parent N M e *KS S T

st.
. Where is the highest-priority item? (tl"‘"\ (o ’EL\Q (
« Where is the lowest priority? coue—e Lol o~ A

* Whatis the height of a heap with n items? /A) a W (w\{lukz — e

deleteMin: Step #1
3 R j Dolte land

\ake v Y 2 CAY W
’\L\L V&\\U\L &t réé/(/

)(s) (o) (0 Co venie v ikl
av\cﬁL\Uf I/\OO(‘L

deleteMin: Step #2 (Keep Structure Property)
Cdk 0o Ltké L¥1V\&Y7 —'W—f’(}

Want to keep structure property

4

9 Prcle lask o O

_%L\L L otora Yo W

GRVAN

\ U

Lo ale hole”

deleteMin: Step #3

Want to restore heap property

Z, '“(\74@\(o \lato dow

j’@ g voer™ ?,:onh’@7
’E\/\a\/\ Q[’\‘\c()

S\ Ay Ao ot
QMYOWMM oL\

FLQM’\'

deleteMin: Step #3 (Restore Heap Property)

Percolate down:
« Compare priority of item with its children
« If item has lower priority, swap with the most important child

—

» Repeat until both children have lower priority or we’ve reached a leaf node

HIOIO ©®
What is the run time? D((.o 6\/?) - O (w\\f °GC M}

deleteMin: Run Time Analysi y
eleteMin \un |me3 nalysis jg/j&'
* Run time is @“\ﬂ‘ﬂ&* w "g/f\b
* Aheapis a C)Q\/\/\{)&(’Q L

* So its height with n nodes is Lo 6 1 AN /\,

* Sorun time of deleteMinis Q ((/96 ‘s o "

(YUt
) DR AV

H#1 \/\OC\\A)\OI\V\ ?mwy
t: Step

inser

- st
& dotaa wtO .
?;Vmi\ O\\OLC Y

(w (,f {0\§‘T row>

AR e
v/ C—Jf\/\
XU

VWA

v TYQ@> |
’—%O X@\(V\ on (€

—o

(C_Q,W.\%L\

insert: Step #2 Restore Heap ?Wvﬂjy

QO/‘/\(fQ(Q, Adaton wﬁq,\
H_S PQYQM

S\’\’mr L/u*r&\f\ ?@YQV*/

“ t's more ‘M(W%m\i-
’5\"5\\/\ Fare\/\—k

e F@ar)r

insert: Step #2 (Restore Heap Property)

Percolate up: C X gD mﬁ\u/‘>
. /Qﬂmﬁviv\/ o k

Put new data in new location

If higher priority than parent, swap with parent

Repeat until parent is more important or reached root

Summary: basic idea for operations

findMin: return root.data

deleteMin:

1. answer = root.data

2. Move right-most node in last row to root
to restore structure property

3. “Percolate down” to restore heap property

insert:

1. Put new node in next position on bottom
row to restore structure property

2. “Percolate up” to restore heap property

Overall strategy:
1. Preserve structure property
2. Restore heap property

Binary Heap Q ‘
» \
95 1 { - 2
/ 2
* Operations §0% é N l— 2 X
* O(logn) insert > M j’ 2
* O(log n) deleteMin worst-case Su - ZH' \
* Very good constant factors -9 TZ?’» \

 |[fitems arrive in random order, then insert is O(1) on average L(

ﬁi% ol J&\M§ av<_ w~
\/7/5*\’0\,\/\ 9 mwS

Summary: Priority Queue ADT

* Priority Queue ADT:

* insert comparable object,
* deleteMin

* Binary heap data structure:

* Complete binary tree =
* Each node has less important (40) (@ &
priority value than its parent (700) (50)

 insert and deleteMin operations = O(height-of-tree)=0(1og n)
* insert: putatnew last position in tree and percolate-up

* deleteMin: remove root, put last element at root and
percolate-down

Binary Trees Implemented with an Array

° From node 1i:
left child: 1 *2 <

G e right child: 1 *2+1

‘N parent: 1/2 <—

index arithmetic)

o~
@ O ©
/ \ / \ (wasting index O is
@ @ @ @ convenient for the
A B
1 2

6 7 8 9 10 11 12

clolelFlalal 1 DTl L

13

Judging the array implementation e e s

Lﬁ At g
Pros: ks”ﬁ{@
— o : ‘ S
* Non-data space: just index 0 and unused space on right

* In conventional tree representation, one edge per node (except for root), v ce\\
so n-1 wasted space (like linked lists) orly .S

* Array would waste more space if tree were not complete <"< C°"‘> A e
* Multiplying and dividing by 2 is very fast (shift operations in hardware)
* Last used position is just index

Cons:

* Same might-be-empty or might-get-full problems we saw with array-based
stacks and queues (resize by doubling as necessary)

Pros outweigh cons: min-heaps almost always use array implementation

Practice time!
Starting with an empty array-based binary heap, which is the result after
1. insert (in this order): 16, 32, 4, 67, 105, 43, 2

2. deleteMin once

A) C)
4 16 32 43 67 | 105 4 32 16 43 | 105 | 67
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6
B) m
16 32 4 67 | 105 | 43 ~__ | 32 16 67 | 105 | 43

Semi-Pseudocode: insert into binary heap

vold insert (int wval) { int percolateUp (int hole, N
(size==arr.length-1) int val) { fbﬁ
cesine () ; (hole > 1 && =—""""" " on
. ¢ val < arr[hole/2]) ==

sizet+; arr[hole] = arr[hole/2]; w/ \bwj”
i=percolateUp(size,val); hole = hole / 2; ?},‘\o:\7
arr[i] = val; }

) hole;

} ' .
_/\ (\ I~ &y
(10) =
G) This pseudocode uses ints. In real use,

you will have data nodes with priorities.

10 | 20 | 80 | 40 | 60 | 85 | 99 | 700 | 50

Semi-Pseudocode: deleteMin from binary heap

int deleteMin () { int percolateDown (int hole,
. int val) {
(1sEmpty ()) .. (2*hole <= size) éﬁi———>mc% 4:
—= ans = arr([l]; left = 2*hole; LLﬁ
hole = percolateDown right = left + 1; Ck‘l
(1,arr[sizel); ' (right > size . Ve i,
arr[hole] = arr[size]; arr[left] < arr[right]) & e i
. ’ target = left; .
Slilze——; ‘(JY\ ov\7
ans; target = right;
} (arr[target] < wval) {
arr[hole] = arr[target]; LI K
(10D hole = target; ?
}
(20 (80 .
@ & G &) < L dene
hole;
@D GO :

10 | 20 | 80 | 40 | 60 | 85 | 99 | 700 | 50

Example

1. insert (inthis order): 16, 32, 4, 67, 105, 43, 2 &

2. deleteMin once

165

?Q(C/\ “J(LU\()

EW

)

W n A\/ L “yeeS cann
&Q\V\&t’ N \’\Qﬂ\fj
W\&V\j{}{ Q)(@VV\/ \e ¢
c oYW ()
Leact AVL

—~Y ek

\\w\”\7

VIR

