
Instructor:	Lilian	de	Greef
Quarter:	Summer	2017

CSE	373:	Data	Structures	and	Algorithms
Lecture	11:	Finish	AVL	Trees;	Priority	Queues;	Binary	Heaps

Today

• Announcements
• Finish	AVL	Trees
• Priority	Queues
• Binary	Heaps

Announcements

• Changes	to	Office	Hours:	from	now	on…
• Nomore	Wednesday	morning	&	shorterWednesday	afternoon	office	hours
• New Thursday	office	hours!
• Kyle’s	Wednesday	hour	is	now	1:30-2:30pm
• Ben’s	office	hours	is	now	Thursday	1:00-3:00pm

• AVL	Tree	Height
• In	section,	computed	that	minimum	#		nodes	in	AVL	tree	of	a	certain	height	is	
S(h)	=	1	+	S(h-1)	+	S(h-2)								where	h	=	height	of	tree

• Posted	a	proof	next	to	these	lecture	slides	online	for	your	perusal

Announcements

• Midterm
• Next	Friday!	(at	usual	class	time	&	location)
• Everything	we	cover	in	class	until	exam	date	is	fair	game	(minus	clearly-marked	
“bonus	material”).	That	includes	next	week’s	material!

• Today’s	hw3	due	date	designed	to	give	you	time	to	study.

• Course	Feedback
• Heads	up:	official	UW-mediated	course	feedback	session	for	part	of	Wednesday
• Also	want	to	better	understand	an	anonymous	concern	on	course	pacing	→ Poll

The	AVL	Tree	Data	Structure

An	AVL	tree	is	a	self-balancing	binary	search	tree.

Structural	properties
1. Binary	tree	property	(same	as	BST)
2. Order property	(same	as	for	BST)

3. Balance	condition:
balance	of	every	node	is	between	-1	and	1

where	balance(node)	=	height(node.left)	– height(node.right)

Result:	Worst-case depth	is	O(log	n)

Single	Rotations

(Figures	by	Melissa	O’Neill,	reprinted	with	her	permission	to	Lilian)

Case	#3:	Right-Left	Case

(Figures	by	Melissa	O’Neill,	reprinted	with	her	permission	to	Lilian)

Case	#3:	Right-Left	Case	(after	one	rotation)

(Figures	by	Melissa	O’Neill,	reprinted	with	her	permission	to	Lilian)

right	rotate

Case	#3:	Right-Left	Case	(after	two	rotations)

(Figures	by	Melissa	O’Neill,	reprinted	with	her	permission	to	Lilian)

right	rotate

left	rotate

A	way	to	remember	it:
Move	d	to	grandparent’s	position.	Put	everything	else	in	their	only	legal	positions	for	a	BST.

Practice	time!	Example	of	Case	#4

A)

5010

8030

60

10

30

42

8050

60

10

30

50

8042

60

10

30

50

8042

60

42

10

30

8060

50

B) C) D)

Which	of	the	following	
is	the	updated	AVL	tree	
after	inserting	42?

Starting	with	this	
AVL	tree:

(extra	space	for	your	scratch	work	and	notes)

Practice	time!	Example	of	Case	#4

5010

8030

60 Which	of	the	following	
is	the	updated	AVL	tree	
after	inserting	42?

Starting	with	this	
AVL	tree:

What	rotations	did	we	do?What’s	the	name	of	this	case?

Insert,	summarized

• Insert	as	in	our	generic	BST

• Check	back	up	path	for	imbalance,	which	will	be	1	of	4	cases:
• Node’s	left-left grandchild	is	too	tall
• Node’s left-right	grandchild	is	too	tall
• Node’s	right-left grandchild	is	too	tall
• Node’s	right-right	grandchild	is	too	tall

• Only																							occurs	because	

• After	the	appropriate	single	or	double	rotation,	the	smallest-unbalanced	subtree	
has	the	same	height	as	before	the	insertion

• So	all	ancestors	are	now	balanced

13

AVL	Tree	Efficiency

• Worst-case	complexity	of	find:	

• Worst-case	complexity	of	insert:	

• Worst-case	complexity	of	buildTree:	

Takes	some	more	rotation	action	to	handle	delete…

Pros	and	Cons	of	AVL	Trees
Arguments	for	AVL	trees:

1. All	operations	logarithmic	worst-case	because	trees	are	always balanced
2. Height	balancing	adds	no	more	than	a	constant	factor	to	the	speed	of	

insert and	delete

Arguments	against	AVL	trees:

1. Difficult	to	program	&	debug	[but	done	once	in	a	library!]
2. More	space	for	height	field
3. Asymptotically	faster	but	rebalancing	takes	a	little	time
4. If	amortized logarithmic	time	is	enough,	use	splay	trees	(also	in	the	text,	

not	covered	in	this	class)

Lots	of	cool	Self-Balancing	BSTs	out	there!

Popular	self-balancing	BSTs	include:
• AVL	tree
• Splay	tree
• 2-3	tree
• AA	tree
• Red-black	tree
• Scapegoat	tree
• Treap
(From	https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree#Implementations)

(Not	covered	in	this	class,	but	several	are	in	the	
textbook	and	all	of	them	are	online!)

Wrapping	Up:	Hash	Table	vs	BST	Dictionary

Hash	Table	advantages:

BST	advantages:
• Can	get	keys	in	sorted	order	without	much	extra	effort
• Same	for	ordering	statistics,	finding	closest	elements,	range	queries
• Easier	to	implement	if	don’t	have	hash	function	(which	are	hard!).
• Can	guarantee	O(log	n)	worst-case	time,	whereas	hash	tables	are	O(1)	
average time.

Priority	Queue	ADT	&	
Binary	Heap	data	structure
Like	a	Queue,	but	with	priorities	for	each	element.

An	Introductory	Example…

Gill	Bates,	the	CEO	of	the	software	company	Millisoft,	
built	a	robot	secretary	to	manage	her	hundreds	of	emails.	
During	the	day,	Bates	only	wants	to	look	at	a	few	emails	every	now	and	
then	so	she	can	stay	focused.
The	robot	secretary	sends	her	the	most	important	emails	each	time.
To	do	so,	he	assigns	each	email	a	priority when	he	gets	them	
and	only	sends	Bates	the	highest	priority emails	upon	request.

All	of	your	computer	
servers	are	on	fire!
Priority:

Here’s	a	reminder	for	our	
meeting	in	2	months.
Priority:

Priority	Queue	ADT
A	priority	queue holds	compare-able	data

• Like	dictionaries,	we	need	to	compare	items
• Given	x and	y,	is	x less	than,	equal	to,	or	greater	than	y
• Meaning	of	the	ordering	can	depend	on	your	data

• The	data	typically	has	two	fields:
• We’ll	now	use	integers	for	examples,	but	can	use	other	types	/objects	for	priorities	too!

new	email highest	
priority	email

7
1812

23

345

15
6 2

In	our	introductory	
example:

Priority	Queue	ADT
Meaning:

• A	priority	queue holds	compare-able	data
• Key	property:

Operations:

7
1812

23

345

15
6 2

Priority	Queue:	Example

insert x1 with	priority	5
insert x2 with	priority	3
a = deleteMin
insert x3 with	priority	2
insert x4 with	priority	6
c = deleteMin
d = deleteMin

Analogy:	insert is	like	enqueue,					deleteMin is	like	dequeue
But	the	whole	point	is	to	use	priorities	instead	of	FIFO

insert deleteMin

Applications

Like	all	good	ADTs,	the	priority	queue	arises	often

• Run	multiple	programs	in	the	operating	system
• “critical”	before	“interactive”	before	“compute-intensive”

• Treat	hospital	patients	in	order	of	severity	(or	triage)
• Forward	network	packets	in	order	of	urgency
• Select	most	frequent	symbols	for	data	compression	
• Sort	(first	insert all,	then	repeatedly	deleteMin)

• Much	like	Homework	1	uses	a	stack	to	implement	reverse

Finding	a	good	data	structure
Will	show	an	efficient,	non-obvious	data	structure	for	this	ADT

But	first	let’s	analyze	some	“obvious”	ideas	for	n data	items

data insert	algorithm	/	time deleteMin algorithm	/	time
unsorted	array
unsorted	linked	list
sorted	circular	array
sorted	linked	list
binary	search	tree
AVL	tree

add	at	end search
add	at	front search
search	/	shift move	front
put	in	right	place remove	at	front
put	in	right	place leftmost
put	in	right	place leftmost

Our	data	structure
A	binary	min-heap (or	just	binary	heap or	just	heap)	has:
• Structure	property:
• Heap	property:	The	priority	of	every	(non-root)	node	is	less	important	than	
the	priority	of	its	parent

So:
• Where	is	the	highest-priority	item?
• Where	is	the	lowest	priority?
• What	is	the	height	of	a	heap	with	n items?

73

185

10

996040

8020

10

50 700

85

deleteMin:		Step	#1

34

9857

106911

1

deleteMin:		Step	#2	(Keep	Structure	Property)

Want	to	keep	structure	property

34

9857

106911

deleteMin:		Step	#3

Want	to	restore	heap	property

34

9857

6911

deleteMin:	Step	#3	(Restore	Heap	Property)
Percolate down:
• Compare priority of item with its children
• If item has lower priority, swap with the most important child
• Repeat until both children have lower priority or we’ve reached a leaf node

What	is	the	run	time?

84

91057

6911

3

34

9857

10

6911

?

11

4

9857

10

69

3 ?

30

deleteMin:	Run	Time	Analysis

• Run	time	is

• A	heap	is	a

• So	its	height	with	n nodes	is

• So	run	time	of	deleteMin is

insert:		Step	#1

34

9857

6911

1

2

insert:		Step	#2

2

34

9857

6911

1

insert:		Step	#2	(Restore	Heap	Property)
Percolate up:
• Put new data in new location
• If higher priority than parent, swap with parent
• Repeat until parent is more important or reached root

What is the running time?

2

84

91057

6911

1

? 2
5

84

9107

6911

1

?

2

5

8

91047

6911

1?

2

Summary:	basic	idea	for	operations
findMin:	return	root.data

deleteMin:	
1. answer = root.data
2. Move	right-most	node	in	last	row	to	root	

to	restore	structure	property
3. “Percolate	down”	to	restore	heap	property

insert:
1. Put	new	node	in	next	position	on	bottom	

row	to	restore	structure	property
2. “Percolate	up”	to	restore	heap	property

34

Overall	strategy:
1. Preserve	structure	property
2. Restore	heap	property

Binary	Heap

• Operations

• O(log n)	insert

• O(log n)	deleteMin worst-case

• Very good	constant	factors

• If items	arrive	in	random	order,	then	insert is	O(1)	on	average

35

Summary:	Priority	Queue	ADT

• Priority	Queue	ADT:	
• insert comparable	object,	
• deleteMin

• Binary	heap	data	structure:	
• Complete	binary	tree	
• Each	node	has	less	important	

priority	value	than	its	parent

• insert and	deleteMin operations	=	O(height-of-tree)=O(log n)
• insert: put	at	new	last	position	in	tree	and	percolate-up
• deleteMin:	 remove	root,	put	last	element	at	root	and		

percolate-down

insert deleteMin

996040

8020

10

700 50

85

7
1812

23

345

15
6 2

Binary	Trees	Implemented	with	an	Array
From	node	i:

left	child:	i*2
right	child:	i*2+1
parent:	i/2

(wasting	index	0	is	
convenient	for	the	
index	arithmetic)

GED

CB

A

J KH I

F

L

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Judging	the	array	implementation
Pros:
• Non-data	space:	just	index	0	and	unused	space	on	right

• In	conventional	tree	representation,	one	edge	per	node	(except	for	root),	
so	n-1	wasted	space	(like	linked	lists)

• Array	would	waste	more	space	if	tree	were	not	complete
• Multiplying	and	dividing	by	2	is	very	fast	(shift	operations	in	hardware)
• Last	used	position	is	just	index
Cons:
• Same	might-be-empty	or	might-get-full	problems	we	saw	with	array-based	
stacks	and	queues	(resize	by	doubling	as	necessary)

Pros	outweigh	cons:	min-heaps	almost	always	use	array	implementation

Practice	time!	
Starting	with	an	empty	array-based	binary	heap,	which	is	the	result	after
1. insert (in	this	order):	16,	32,	4,	67,	105,	43,	2
2. deleteMin once

0 1 2 3 4 5 6 7

4 15 32 43 67 105

0 1 2 3 4 5 6 7

16 32 4 67 105 43

0 1 2 3 4 5 6 7

4 32 16 43 105 67

0 1 2 3 4 5 6 7

4 32 16 67 105 43

0 1 2 3 4 5 6 7

A)

B)

C)

D)

(extra	space	for	your	scratch	work	and	notes)

Semi-Pseudocode:	insert into	binary	heap

41

void insert(int val) {
if(size==arr.length-1)
resize();

size++;
i=percolateUp(size,val);
arr[i] = val;

}

int percolateUp(int hole,
int val) {

while(hole > 1 &&
val < arr[hole/2])

arr[hole] = arr[hole/2];
hole = hole / 2;

}
return hole;

}

996040

8020

10

700 50

85

10 20 80 40 60 85 99 700 50

0 1 2 3 4 5 6 7 8 9 10 11 12 13

This	pseudocode uses	ints.		In	real	use,	
you	will	have	data	nodes	with	priorities.

Semi-Pseudocode:	deleteMin from	binary	heap

42

int deleteMin() {
if(isEmpty()) throw…
ans = arr[1];
hole = percolateDown

(1,arr[size]);
arr[hole] = arr[size];
size--;
return ans;

}

int percolateDown(int hole,
int val) {

while(2*hole <= size) {
left = 2*hole;
right = left + 1;
if(right > size ||

arr[left] < arr[right])
target = left;

else
target = right;

if(arr[target] < val) {
arr[hole] = arr[target];
hole = target;

} else
break;

}
return hole;

}

996040

8020

10

700 50

85

10 20 80 40 60 85 99 700 50

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Example
1. insert (in	this	order):	16,	32,	4,	67,	105,	43,	2
2. deleteMin once

0 1 2 3 4 5 6 7

Example
1. insert (in	this	order):	16,	32,	4,	67,	105,	43,	2
2. deleteMin once

0 1 2 3 4 5 6 7

Other	operations

• decreaseKey:	given	pointer	to	object	in	priority	queue	(e.g.,	its	array	index),	
lower	its	priority	value	by	p

• Change	priority	and	percolate	up

• increaseKey:	given	pointer	to	object	in	priority	queue	(e.g.,	its	array	index),	
raise	its	priority	value	by	p

• Change	priority	and	percolate	down

• remove:	given	pointer	to	object	in	priority	queue	(e.g.,	its	array	index),	remove	it	
from	the	queue

• decreaseKey with	p =	¥,	then	deleteMin

Running	time	for	all	these	operations?
45

