CSE 373: Data Structures and Algorithms
Lecture 11: Finish AVL Trees; Priority Queues; Binary Heaps

Instructor: Lilian de Greef
Quarter: Summer 2017

Today

* Announcements
* Finish AVL Trees
* Priority Queues

* Binary Heaps

Announcements

* Changes to Office Hours: from now on...
* No more Wednesday morning & shorter Wednesday afternoon office hours
* New Thursday office hours!
* Kyle’s Wednesday hour is now 1:30-2:30pm
e Ben’s office hours is now Thursday 1:00-3:00pm

* AVL Tree Height

* In section, computed that minimum # nodes in AVL tree of a certain height is
S(h) =1 + S(h-1) + S(h-2) where h = height of tree

* Posted a proof next to these lecture slides online for your perusal

Announcements

 Midterm
* Next Friday! (at usual class time & location)

* Everything we cover in class until exam date is fair game (minus clearly-marked
“bonus material”). That includes next week’s material!

* Today’s hw3 due date designed to give you time to study.

* Course Feedback
* Heads up: official UW-mediated course feedback session for part of Wednesday

* Also want to better understand an anonymous concern on course pacing - Poll

Back to AVL Trees

Finishing up last couple cases for insert, then wrapping up BSTs

The AVL Tree Data Structure

An AVL tree is a self-balancing binary search tree.

Structural properties
1. Binary tree property (same as BST)
2. Order property (same as for BST)

3. Balance condition:
balance of every node is between -1 and 1

where balance(node) = height(node.left) — height(node.right)

Result: Worst-case depth is O(log n) S

Single Rotations

| Right Rouu>
<: Left Rotate

g 2

(Figures by Melissa O’Neill, reprinted with her permission to Lilian)

(Figures by Melissa O’Neill, reprinted with her permission to Lilian)

A Better Look at Case #3:

(Figures by Melissa O’Neill, reprinted with her permission to Lilian)

Case #3: Right-Left Case (after one rotation)

(Figures by Melissa O’Neill, reprinted with her permission to Lilian)

Case #3: Righ&Left Case (after two rotations)
C uplewnled
\\/"\\o/‘

A way to remember it:
Move d to grandparent’s position. Put everything else in their only legal positions for a BST.

mm——

(Figures by Melissa O’Neill, reprinted with her permission to Lilian)

Practice time! Example of Case #4

Starting with this @ Which of the following
AVL tree: is the updated AVL tree
@ @ after inserting 427
5 &V A\/lt’ Te aw

et (10) (50 AV L e

Practice time! Example of Case #4 W;’_

“\W\\,, A\LV\

Which of the following
is the updated AVL tree
after inserting 427

Starting with this
AVL tree:

<
D
2,0 N

LQQ nstake @ 6>

What's the name of this case? -| i \‘V\LS\J(What rotations did we do?
- <P\\SL’\ MQ{—L (60>

Insert, summarized

* Insert as in our generic BST
* Check back up path for imbalance, which will bea/of 4 cases:
* Node’s left-left grandchild is too tall /O\ .
* Node’s left-right grandchild is too tall
* Node’s right-left grandchild is too tall / 3 /5
* Node’s right-right grandchild is too tall /> 0 g

* Only owe case occurs because tree was balanced before Lnsert

» After the appropriate single or double rotation, the smallest-unbalanced subtree
has the same height as before the insertion

e So all ancestors are now balanced

14

AVL Tree Efficiency

* Worst-case complexity of £ind: O (@5 VD

* Worst-case complexity of insert: O (IN 9 V‘\ . M
- o(ﬂuﬁﬂ W Bed Db e ?
— O o e vtation

* Worst-case complexity of bui1dTree: () Q\ /14) 6 h}

Takes some more rotation action to handle delete...
[oot abis conrs)

Pros and Cons of AVL Trees

Arguments for AVL trees:

1. All operations logarithmic worst-case because trees are always balanced
2. Height balancing adds no more than a constant factor to the speed of
insert anddelete

Arguments against AVL trees:

Difficult to program & debug [but done once in a library!]

More space for height field

Asymptotically faster but rebalancing takes a little time

If amortized logarithmic time is enough, use splay trees (also in the text,
not covered in this class)

B wnN e

Lots of cool Self-Balancing BSTs out there!

Popular self-balancing BSTs include:
* AVL tree <«—

* Splay tree <—
e 2-3tree . (Not covered in this class, but several are in the
textbook and all of them are online!)

* AA tree :
* Red-black tree <

* Scapegoat tree
* Treap

(From https://en.wikipedia.org/wiki/Self-balancing binary search tree#lmplementations)

Wrapping Up: Hash Table vs BST Dictionary

Hash Table advantages: \ , /
Avornng B0 bed ’

BST advantages:
* Can get keys in sorted order without much extra effort
* Same for ordering statistics, finding closest elements, range queries
e Easier to implement if don’t have hash function (which are hard!).
* Can guarantee O(log n) worst-case time, whereas hash tables are O(1)
. — e
average time.

Priority Queue ADT

Like a Queue, but with priorities for each element.

An Introductory Example...

Gill Bates, the CEO of the software company Millisoft,

built a robot secretary to manage her hundreds of emails.

During the day, Bates only wants to look at a few emails every now and
then so she can stay focused.

The robot secretary sends her the most important emails each time.
To do so, he assigns each email a priority when he gets them

and only sends Bates the highest priority emails upon request.

All of your computer Here’s a reminder for our
8 servers are on fire! @ meeting in 2 months.
Priority: L Priority: L(l

Priority Queue ADT

A priority queue holds compare-able data In our ilntroductorv
example:

* Like dictionaries, we need to compare items
* Given xandy, is x less than, equal to, or greater than y
* Meaning of the ordering can @pe'nd on your data

B . ™M12 ™18 8
new email &3 ™7 highest
priority email
. . \y ° &
* The data typically has two fields: =y 1 6¥ TN awn & » <A

* We'll now use integers for examples, but can use other types /objects for priorities too!

Priority Queue ADT

Meaning:

A priority queue holds compare-able data

* Key property: golote Min
e

Operations:
- doleta M
— \lv\ S‘ﬁﬁ W\S’QK
— QA)\/\&A\(\5

FeXu ‘(V\SJ

s Aeleke s

VN S N L

< CHh v(/gb\\/& ’EEQS QYL’RJ{r&V (\(‘\

Riat ?v(ov:*7_

Priority Queue: Example

insert x; with priority 5

insert x, with priority 3)& %

6 = deleteMin insert X: deleteMin
insert x; with priority 2 Q

insert x, with priority 6

c = deleteMin

d = deleteMin = S

c =2

Analogy: insert is like enqueue, deleteMin islike dqu&eue6
But the whole point is to use priorities instead of FIFO

