
Instructor:	Lilian	de	Greef
Quarter:	Summer	2017

CSE	373:	Data	Structures	and	Algorithms
Lecture	11:	Finish	AVL	Trees;	Priority	Queues;	Binary	Heaps



Today

• Announcements
• Finish	AVL	Trees
• Priority	Queues
• Binary	Heaps



Announcements

• Changes	to	Office	Hours:	from	now	on…
• Nomore	Wednesday	morning	&	shorterWednesday	afternoon	office	hours
• New Thursday	office	hours!
• Kyle’s	Wednesday	hour	is	now	1:30-2:30pm
• Ben’s	office	hours	is	now	Thursday	1:00-3:00pm

• AVL	Tree	Height
• In	section,	computed	that	minimum	#		nodes	in	AVL	tree	of	a	certain	height	is	
S(h)	=	1	+	S(h-1)	+	S(h-2)								where	h	=	height	of	tree
• Posted	a	proof	next	to	these	lecture	slides	online	for	your	perusal



Announcements

• Midterm
• Next	Friday!	(at	usual	class	time	&	location)
• Everything	we	cover	in	class	until	exam	date	is	fair	game	(minus	clearly-marked	
“bonus	material”).	That	includes	next	week’s	material!

• Today’s	hw3	due	date	designed	to	give	you	time	to	study.

• Course	Feedback
• Heads	up:	official	UW-mediated	course	feedback	session	for	part	of	Wednesday
• Also	want	to	better	understand	an	anonymous	concern	on	course	pacing	→ Poll



Back	to	AVL	Trees
Finishing	up	last	couple	cases	for	insert,	then	wrapping	up	BSTs



The	AVL	Tree	Data	Structure

An	AVL	tree	is	a	self-balancing	binary	search	tree.

Structural	properties
1. Binary	tree	property	(same	as	BST)
2. Order property	(same	as	for	BST)

3. Balance	condition:
balance	of	every	node	is	between	-1	and	1

where	balance(node)	=	height(node.left)	– height(node.right)

Result:	Worst-case depth	is	O(log	n)



Single	Rotations

(Figures	by	Melissa	O’Neill,	reprinted	with	her	permission	to	Lilian)



Case	#3:

(Figures	by	Melissa	O’Neill,	reprinted	with	her	permission	to	Lilian)



A	Better	Look	at	Case	#3:

(Figures	by	Melissa	O’Neill,	reprinted	with	her	permission	to	Lilian)



Case	#3:	Right-Left	Case	(after	one	rotation)

(Figures	by	Melissa	O’Neill,	reprinted	with	her	permission	to	Lilian)

right	rotate



Case	#3:	Right-Left	Case	(after	two	rotations)

(Figures	by	Melissa	O’Neill,	reprinted	with	her	permission	to	Lilian)

right	rotate

left	rotate

A	way	to	remember	it:
Move	d	to	grandparent’s	position.	Put	everything	else	in	their	only	legal	positions	for	a	BST.



Practice	time!	Example	of	Case	#4

A)

5010

8030

60

10

30

42

8050

60

10

30

50

8042

60

10

30

50

8042

60

42

10

30

8060

50

B) C) D)

Which	of	the	following	
is	the	updated	AVL	tree	
after	inserting	42?

Starting	with	this	
AVL	tree:



Practice	time!	Example	of	Case	#4

5010

8030

60 Which	of	the	following	
is	the	updated	AVL	tree	
after	inserting	42?

Starting	with	this	
AVL	tree:

What	rotations	did	we	do?What’s	the	name	of	this	case?



Insert,	summarized

• Insert	as	in	our	generic	BST
• Check	back	up	path	for	imbalance,	which	will	be	1	of	4	cases:

• Node’s	left-left grandchild	is	too	tall
• Node’s left-right	grandchild	is	too	tall
• Node’s	right-left grandchild	is	too	tall
• Node’s	right-right	grandchild	is	too	tall

• Only																							occurs	because	
• After	the	appropriate	single	or	double	rotation,	the	smallest-unbalanced	subtree	
has	the	same	height	as	before	the	insertion
• So	all	ancestors	are	now	balanced

14

one case tree was balanced before insert



AVL	Tree	Efficiency

• Worst-case	complexity	of	find:	

• Worst-case	complexity	of	insert:	

• Worst-case	complexity	of	buildTree:	

Takes	some	more	rotation	action	to	handle	delete…



Pros	and	Cons	of	AVL	Trees
Arguments	for	AVL	trees:

1. All	operations	logarithmic	worst-case	because	trees	are	always balanced
2. Height	balancing	adds	no	more	than	a	constant	factor	to	the	speed	of	

insert and	delete

Arguments	against	AVL	trees:

1. Difficult	to	program	&	debug	[but	done	once	in	a	library!]
2. More	space	for	height	field
3. Asymptotically	faster	but	rebalancing	takes	a	little	time
4. If	amortized logarithmic	time	is	enough,	use	splay	trees	(also	in	the	text,	

not	covered	in	this	class)



Lots	of	cool	Self-Balancing	BSTs	out	there!

Popular	self-balancing	BSTs	include:
• AVL	tree
• Splay	tree
• 2-3	tree
• AA	tree
• Red-black	tree
• Scapegoat	tree
• Treap
(From	https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree#Implementations)

(Not	covered	in	this	class,	but	several	are	in	the	
textbook	and	all	of	them	are	online!)



Wrapping	Up:	Hash	Table	vs	BST	Dictionary

Hash	Table	advantages:

BST	advantages:
• Can	get	keys	in	sorted	order	without	much	extra	effort
• Same	for	ordering	statistics,	finding	closest	elements,	range	queries
• Easier	to	implement	if	don’t	have	hash	function	(which	are	hard!).
• Can	guarantee	O(log	n)	worst-case	time,	whereas	hash	tables	are	O(1)	
average time.



Priority	Queue	ADT
Like	a	Queue,	but	with	priorities	for	each	element.



An	Introductory	Example…

Gill	Bates,	the	CEO	of	the	software	company	Millisoft,	
built	a	robot	secretary	to	manage	her	hundreds	of	emails.	
During	the	day,	Bates	only	wants	to	look	at	a	few	emails	every	now	and	
then	so	she	can	stay	focused.
The	robot	secretary	sends	her	the	most	important	emails	each	time.
To	do	so,	he	assigns	each	email	a	priority when	he	gets	them	
and	only	sends	Bates	the	highest	priority emails	upon	request.

All	of	your	computer	
servers	are	on	fire!
Priority:

Here’s	a	reminder	for	our	
meeting	in	2	months.
Priority:



Priority	Queue	ADT
A	priority	queue holds	compare-able	data

• Like	dictionaries,	we	need	to	compare	items
• Given	x and	y,	is	x less	than,	equal	to,	or	greater	than	y
• Meaning	of	the	ordering	can	depend	on	your	data

• The	data	typically	has	two	fields:
• We’ll	now	use	integers	for	examples,	but	can	use	other	types	/objects	for	priorities	too!

new	email highest	
priority	email

7
1812

23

345

15
6 2

In	our	introductory	
example:



Priority	Queue	ADT
Meaning:
• A	priority	queue holds	compare-able	data
• Key	property:

Operations:

7
1812

23

345

15
6 2



Priority	Queue:	Example

insert x1 with	priority	5
insert x2 with	priority	3
a = deleteMin
insert x3 with	priority	2
insert x4 with	priority	6
c = deleteMin
d = deleteMin

Analogy:	insert is	like	enqueue,					deleteMin is	like	dequeue
But	the	whole	point	is	to	use	priorities	instead	of	FIFO

insert deleteMin


