CSE 373: Data Structures and Algorithms Lecture 11: Finish AVL Trees; Priority Queues; Binary Heaps

Instructor: Lilian de Greef Quarter: Summer 2017

Today

- Announcements
- Finish AVL Trees
- Priority Queues
- Binary Heaps

Announcements

- Changes to Office Hours: from now on...
 - No more Wednesday morning & shorter Wednesday afternoon office hours
 - New Thursday office hours!
 - Kyle's Wednesday hour is now 1:30-2:30pm
 - Ben's office hours is now Thursday 1:00-3:00pm
- AVL Tree Height
 - In section, computed that minimum # nodes in AVL tree of a certain height is
 S(h) = 1 + S(h-1) + S(h-2) where h = height of tree
 - Posted a proof next to these lecture slides online for your perusal

Announcements

- Midterm
 - Next Friday! (at usual class time & location)
 - Everything we cover in class until exam date is fair game (minus clearly-marked "bonus material"). That includes next week's material!
 - Today's hw3 due date designed to give you time to study.
- Course Feedback
 - Heads up: official UW-mediated course feedback session for part of Wednesday
 - Also want to better understand an anonymous concern on course pacing \rightarrow Poll

Back to AVL Trees

Finishing up last couple cases for insert, then wrapping up BSTs

The AVL Tree Data Structure

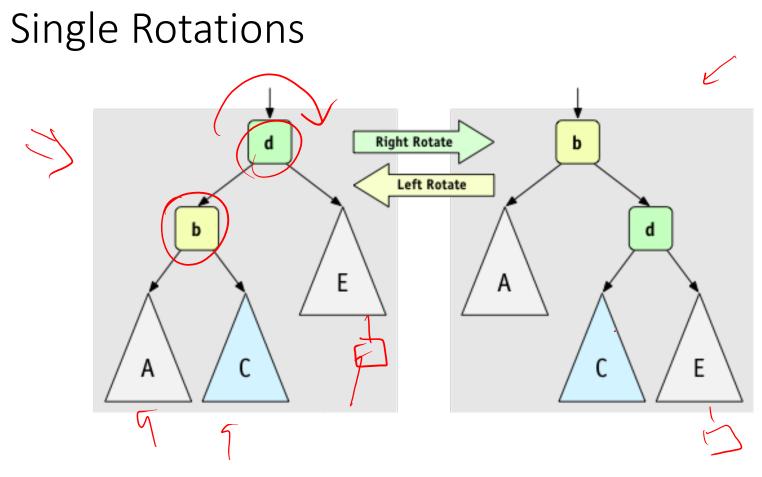
An **AVL tree** is a *self-balancing* binary search tree.

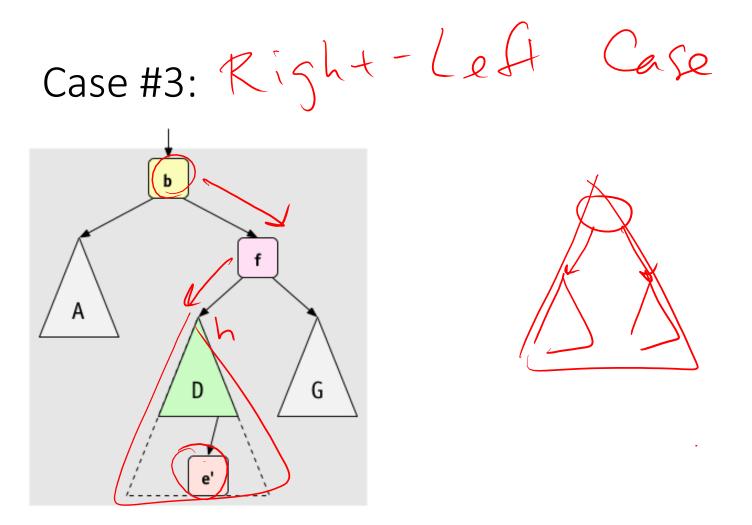
Structural properties

- 1. Binary tree property (same as BST)
- 2. Order property (same as for BST)
- 3. Balance condition: balance of every node is between -1 and 1

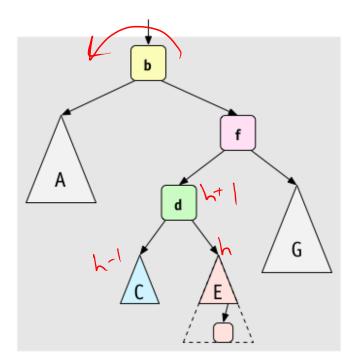
where **balance**(*node*) = height(*node*.left) – height(*node*.right)

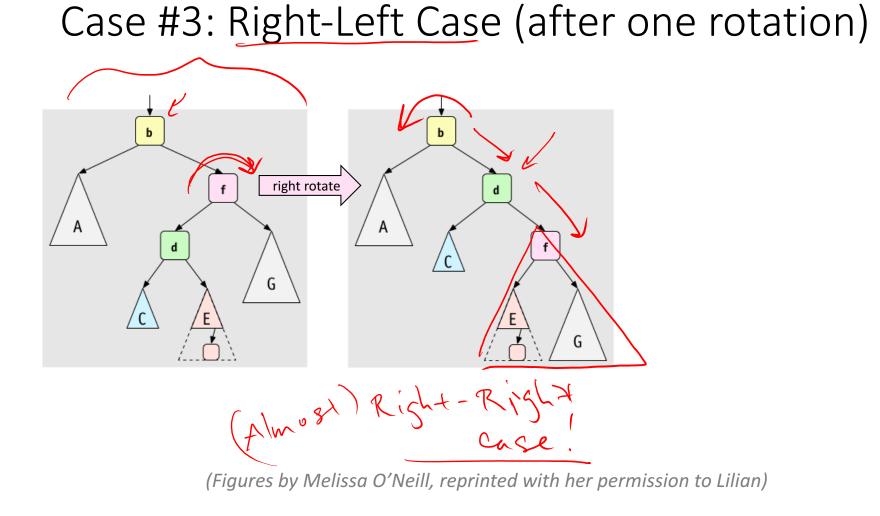
Result: Worst-case depth is O(log n)

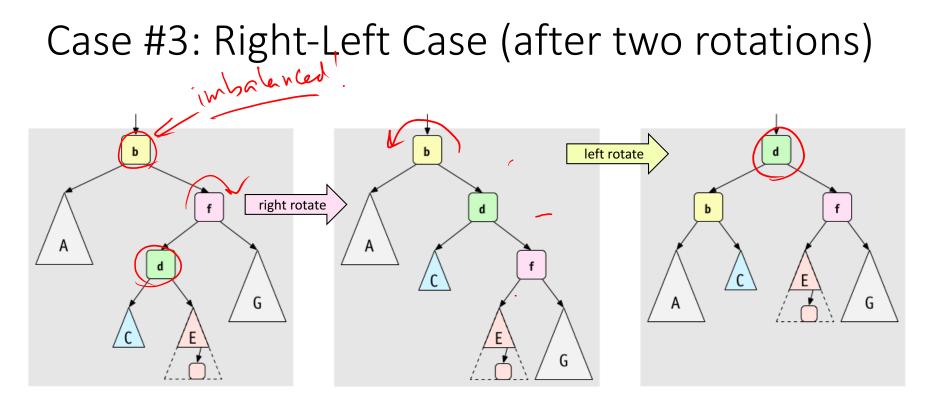




A Better Look at Case #3:

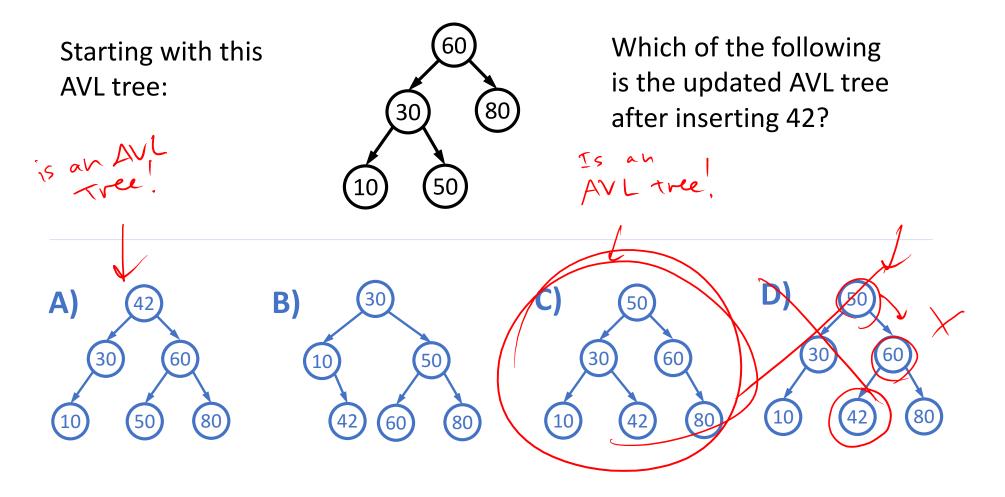


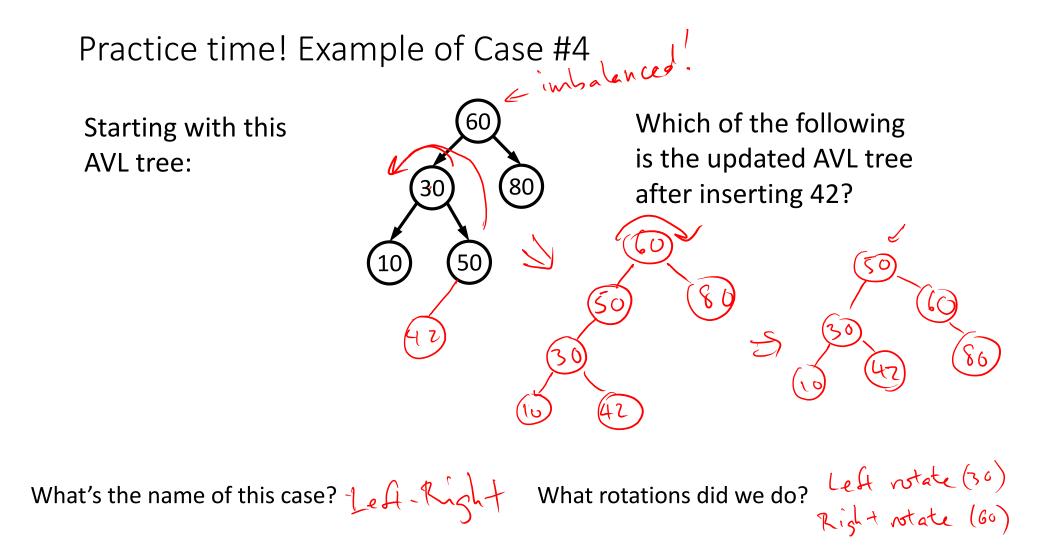




A way to remember it: Move d to grandparent's position. Put everything else in their only legal positions for a BST.

Practice time! Example of Case #4





Insert, summarized

- Insert as in our generic BST
- Check back up path for imbalance, which will be 4 of 4 cases:
 - Node's left-left grandchild is too tall
 - Node's left-right grandchild is too tall
 - Node's right-left grandchild is too tall
 - Node's right-right grandchild is too tall
- will be 4 of 4 cases:

- Only one case occurs because tree was balanced before insert
- After the appropriate single or double rotation, the smallest-unbalanced subtree has the same height as before the insertion
 - So all ancestors are now balanced

AVL Tree Efficiency

- Worst-case complexity of find: O(logn)
 Worst-case complexity of insert: O(logn)
 O(logn) o find where to insert 5
 O(i) to do rotation
- Worst-case complexity of buildTree: () (n log h)

Takes some more rotation action to handle delete... (not overed in this course)

Pros and Cons of AVL Trees

Arguments for AVL trees:

- 1. All operations logarithmic worst-case because trees are *always* balanced
- 2. Height balancing adds no more than a constant factor to the speed of insert and delete

Arguments against AVL trees:

- 1. Difficult to program & debug [but done once in a library!]
- 2. More space for height field
- 3. Asymptotically faster but rebalancing takes a little time
- 4. If *amortized* logarithmic time is enough, use splay trees (also in the text, not covered in this class)

Lots of cool Self-Balancing BSTs out there!

Popular self-balancing BSTs include:

- <u>AVL tree</u>
- <u>Splay tree</u>
- <u>2-3 tree</u>
- <u>AA tree</u>
- <u>Red-black tree</u>
- <u>Scapegoat tree</u>
- <u>Treap</u>

(Not covered in this class, but several are in the textbook and all of them are online!)

(From https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree#Implementations)

Wrapping Up: Hash Table vs BST Dictionary

Hash Table advantages: Average $\Theta(i)$ find, insert, de lete

BST advantages:

- Can get keys in sorted order without much extra effort
- Same for ordering statistics, finding closest elements, range queries
- Easier to implement if don't have hash function (which are hard!).
- Can guarantee O(log n) worst-case time, whereas hash tables are O(1) average time.

Priority Queue ADT

Like a Queue, but with priorities for each element.

An Introductory Example...

Gill Bates, the CEO of the software company Millisoft,

built a robot secretary to manage her hundreds of emails.

During the day, Bates only wants to look at a few emails every now and then so she can stay focused.

The robot secretary sends her the most important emails each time. To do so, he assigns each email a *priority* when he gets them and only sends Bates the *highest priority* emails upon request.

All of your computer servers are on fire!
Priority:

Here's a reminder for our meeting in 2 months.

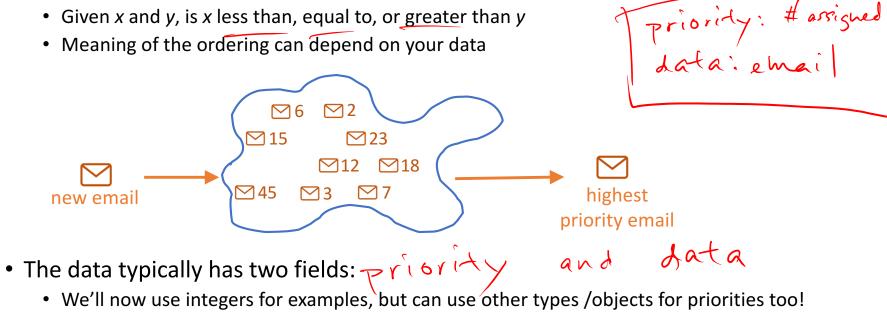
Priority:

Priority Queue ADT

A priority queue holds compare-able data

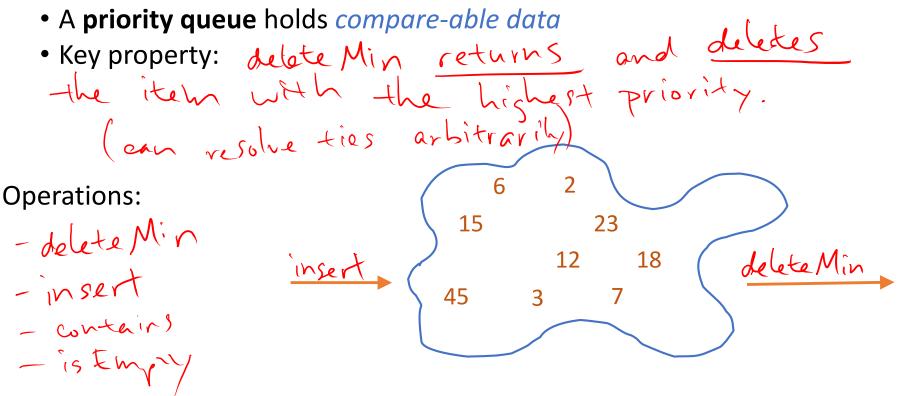
- Like dictionaries, we need to *compare items*
 - Given x and y, is x less than, equal to, or greater than y

Iten

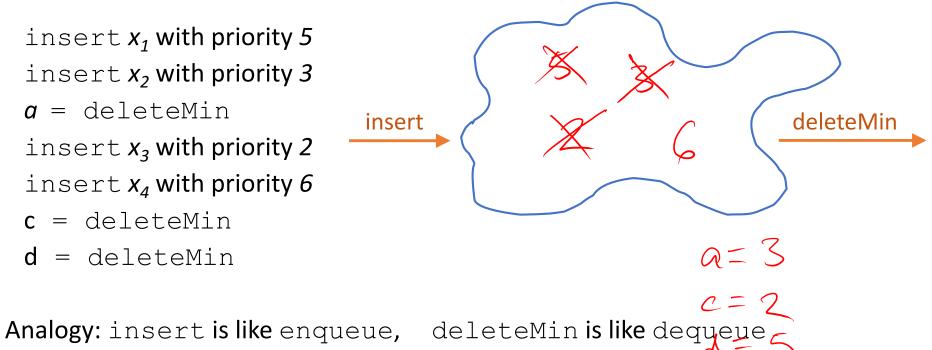


Priority Queue ADT

Meaning:



Priority Queue: Example



But the whole point is to use priorities instead of FIFO