
Instructor:	Lilian	de	Greef
Quarter:	Summer	2017

CSE	373:	Data	Structures	and	Algorithms
Lecture	10:	AVL	Trees



Today

• Announcements
• BSTs	continued	(this	time,	bringing
• buildTree
• Balance	Conditions
• AVL	Trees
• Tree	rotations



Announcements

• Reminder:	homework	3	due	Friday
• Homework	2	grades	should	come	out	today
• Section
• Will	especially	go	over	material	from	today	(it’s	especially	tricky)
• TAs	can	go	over	some	of	the	tougher	hw2	questions	in	section	if	you	want/ask



Back	to	Binary	Search	Trees



buildTree for	BST

Let’s	consider	buildTree (insert	values	starting	from	an	empty	tree)

Insert	values	1,	2,	3,	4,	5,	6,	7,	8,	9		into	an	empty	BST

• If	inserted	in	given	order,	
what	is	the	tree?		

• What	big-O	runtime	for	
buildTree on	this	sorted	input?

• Is	inserting	in	the	reverse	order	any	better?



buildTree for	BST

Insert	values	1,	2,	3,	4,	5,	6,	7,	8,	9		into	an	empty	BST

What	we	if	could	somehow	re-arrange	them
• median	first,	then	left	median,	right	median,	etc.

5,	3,	7,	2,	1,	4,	8,	6,	9

• What	tree	does	that	give	us?	

• What	big-O	runtime?



Balancing	Binary	Search	Trees



BST:	Efficiency	of	Operations?

Problem:

Worst-case	running	time:
• find,	insert,	delete

• buildTree



How	can	we	make	a	BST	efficient?

Observation

Solution:		Require	a	Balance	Condition that

• When	we	build	the	tree,	make	sure	it’s	balanced.	
• BUT…Balancing	a	tree	only at	build	time	is	insufficient.
• We	also	need	to	also	keep the	tree	balanced	as	we	perform	operations.



Potential	Balance	Conditions

• Left	and	right	subtrees

• Left	and	right	subtrees



Potential	Balance	Conditions

• Left	and	right	subtrees

• Left	and	right	subtrees



Potential	Balance	Conditions	

Left	and	right	subtrees



AVL	Tree	(Bonus	material:	etymology)

Invented	by	Georgy	Adelson-Velsky and	Evgenii Landis	in	1962



The	AVL	Tree	Data	Structure

An	AVL	tree	is	a	self-balancing	binary	search	tree.

Structural	properties
1. Binary	tree	property	(same	as	BST)
2. Order property	(same	as	for	BST)

3. Balance	condition:
balance	of	every	node	is	between	-1	and	1

where	balance(node)	=	height(node.left)	– height(node.right)

Result:	Worst-case depth	is



Example	#1:	Is	this	an	AVL	Tree?

Balance	Condition:
balance	of	every	node	is	between	-1	and	1

where	balance(node)	=	
height(node.left)	– height(node.right)

111

84

6

10 12

7



Example	#2:	Is	this	an	AVL	Tree?

3

1171

84

6

2

5

Balance	Condition:
balance	of	every	node	is	between	-1	and	1

where	balance(node)	=	
height(node.left)	– height(node.right)



AVL	Trees

Good	News:
Because	height	of	AVL	tree	is	O(log(n)),	then	find

But	as	we	insert	and	delete	elements,	we	need	to:



AVL	Trees

20

92 15

5

10

30

177

0

0 0

011

2 2

3



AVL	tree	operations

• AVL find:	
• Same	as	usual	BST	find

• AVL	insert:	

• AVL	delete:	
• The	“easy	way”	is	lazy	deletion
• Otherwise,	do	the	deletion	and	then	check	for	several	imbalance	cases	(we	will	skip	
this)



First	insert example

Insert(6)
Insert(3)
Insert(1)

Third	insertion

What’s	the	only	way	to	fix	it?



Fix:	Apply	“Single	Rotation”

• Single	rotation: The	basic	operation	we’ll	use	to	rebalance
• Move	child	of	unbalanced	node	into	parent	position
• Parent	becomes	the	“other”	child	(always	okay	in	a	BST!)
• Other	subtrees	move	in	only	way	BST	allows	(we’ll	see	in	generalized	example)

3

1 6

6

3

AVL	Property	
violated	at	node	6

1



Tree	Rotations:	Generalized



Generalizing	our	examples…

3092

235

12

7 10

18

41



Generalizing	our	examples…

3092

235

12

7 10

18

41



E

CA

Generalizing	our	examples…

5

12



12

E

CA

Generalizing	our	examples…

b

d



Generalized	Single	Rotation

E

CA

b

d



Generalized	Single	Rotation

A

C E

d

b



Single	Rotations

(Figures	by	Melissa	O’Neill,	reprinted	with	her	permission	to	Lilian)



AVL	Tree	insert (more	specific):

1. Insert	the	new	node	as	in	our	generic	BST	(a	new	leaf)

2. For	each	node	on	the	path	from	the	root	to	the	new	leaf,	the	
insertion	may	(or	may	not)	have	changed	the	node’s	height

3. So	after	insertion	in	a	subtree,	



Case	#1:	

E

CA

b

d

a’

(Figures	by	Melissa	O’Neill,	reprinted	with	her	permission	to	Lilian)



Example	#2	for	left-left	case:	 insert(16)

104

228

15

3 6

19

17 20

24

16



Case	#2:	

(Figures	by	Melissa	O’Neill,	reprinted	with	her	permission	to	Lilian)



Example	for	right-right	case:	 insert(26)

104

228

15

6

19

23 25

26

3

24 104 22

8

15

6 19 23

25

26
3

24



Case	#3:

(Figures	by	Melissa	O’Neill,	reprinted	with	her	permission	to	Lilian)



A	Better	Look	at	Case	#3:

(Figures	by	Melissa	O’Neill,	reprinted	with	her	permission	to	Lilian)



Case	#3:	Right-Left	Case	(after	one	rotation)

(Figures	by	Melissa	O’Neill,	reprinted	with	her	permission	to	Lilian)

right	rotate

A	way	to	remember	it:
Move	d	to	grandparent’s	position.	Put	everything	else	in	their	only	legal	positions	for	a	BST.



Practice	time!	Example	of	Case	#4

A)

5010

8030

60

10

30

42

8050

60

10

30

50

8042

60

10

30

50

8042

60

42

10

30

8060

50

B) C) D)

Which	of	the	following	
is	the	updated	AVL	tree	
after	inserting	42?

Starting	with	this	
AVL	tree:



(Extra	space	for	your	scratch-work)



Practice	time!	Example	of	Case	#4

5010

8030

60 Which	of	the	following	
is	the	updated	AVL	tree	
after	inserting	42?

Starting	with	this	
AVL	tree:

What	rotations	did	we	do?What’s	the	name	of	this	case?



Insert,	summarized

• Insert	as	in	our	generic	BST
• Check	back	up	path	for	imbalance,	which	will	be	1	of	4	cases:

• Node’s	left-left grandchild	is	too	tall
• Node’s left-right	grandchild	is	too	tall
• Node’s	right-left grandchild	is	too	tall
• Node’s	right-right	grandchild	is	too	tall

• Only																							occurs	because	
• After	the	appropriate	single	or	double	rotation,	the	smallest-unbalanced	subtree	
has	the	same	height	as	before	the	insertion
• So	all	ancestors	are	now	balanced

41



AVL	Tree	Efficiency

• Worst-case	complexity	of	find:	

• Worst-case	complexity	of	insert:	

• Worst-case	complexity	of	buildTree:	

Takes	some	more	rotation	action	to	handle	delete…



Pros	and	Cons	of	AVL	Trees
Arguments	for	AVL	trees:

1. All	operations	logarithmic	worst-case	because	trees	are	always balanced
2. Height	balancing	adds	no	more	than	a	constant	factor	to	the	speed	of	

insert and	delete

Arguments	against	AVL	trees:

1. Difficult	to	program	&	debug	[but	done	once	in	a	library!]
2. More	space	for	height	field
3. Asymptotically	faster	but	rebalancing	takes	a	little	time
4. If	amortized logarithmic	time	is	enough,	use	splay	trees	(also	in	the	text,	

not	covered	in	this	class)





AVL	Tree	Rotation	Cheat-Sheet
(Just	two	of	the	four	cases)



Single	Rotations

(Figures	by	Melissa	O’Neill,	reprinted	with	her	permission	to	Lilian)



Case	#2:	Left-Left	Case	

(Figures	by	Melissa	O’Neill,	reprinted	with	her	permission	to	Lilian)

left	rotate



Case	#3:	Right-Left	Case	(after	two	rotations)

(Figures	by	Melissa	O’Neill,	reprinted	with	her	permission	to	Lilian)

right	rotate

left	rotate

A	way	to	remember	it:
Move	d	to	grandparent’s	position.	Put	everything	else	in	their	only	legal	positions	for	a	BST.


