CSE 373: Data Structures and Algorithms

Lecture 9: Binary Search Trees

Instructor: Lilian de Greef Quarter: Summer 2017

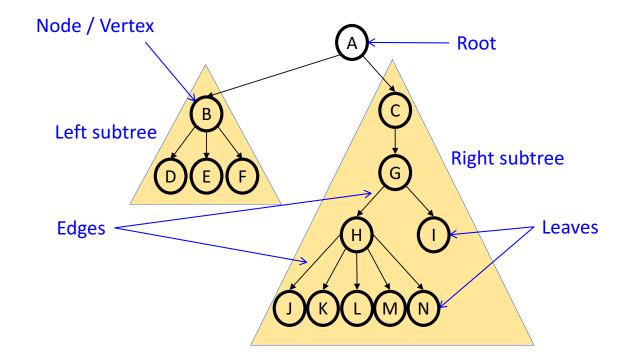
Today

- Announcements
- Binary Trees
 - Height
 - Traversals
- Binary Search Trees
 - Definition
 - find
 - insert
 - delete
 - buildTree

Announcements

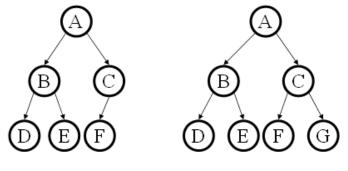
- Change to office hours for just this week
 - Tuesday's "office" office hours / private office hours
 - 12:00pm 12:30pm
 - (not at 1:30pm!)
 - Dorothy and I trading 2:00pm 3:00pm office hours this week
 - Same time and location
- Homework 1 Statistics
 - Mean: 39.7/50 (+1 extra credit)
 - Median: 42.5/50 (+0 extra credit)
 - Max: 49/50 (+1) or 47/50 (+4)
 - Standard Deviation: 10.18

Reminder: Tree terminology



Binary Trees

- Binary tree: Each node has at most 2 children (branching factor 2)
- Binary tree is
 - A root (with data)
 - A left subtree (may be empty)
 - A right subtree (may be empty)
- Special Cases:



Complete Tree

Perfect Tree

(Last week's practice) What does the following method do?

A. It calculates the number of nodes in the tree.

- B. It calculates the depth of the nodes.
- C. It calculates the height of the tree.
- D. It calculates the number of leaves in the tree.

Binary Trees: Some Numbers

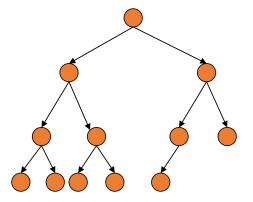
Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height *h*:

- max # of leaves:
- max # of nodes:
- min # of leaves:
- min # of nodes:

For *n* nodes, the min height (best-case) is

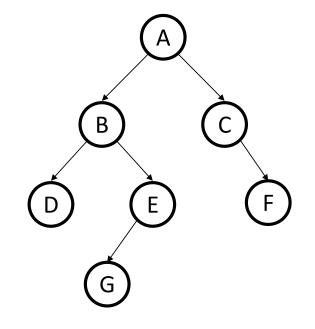
the max height (worst-case) is



Tree Traversals

A traversal is an order for visiting all the nodes of a tree

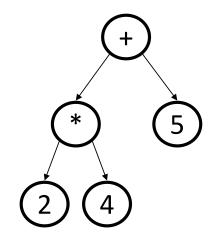
- *Pre-order*: root, left subtree, right subtree
- *In-order*: left subtree, root, right subtree
- *Post-order*: left subtree, right subtree, root



Tree Traversals: Practice

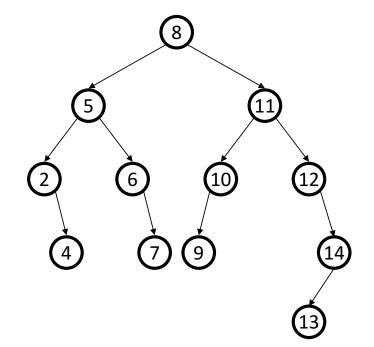
Which one makes sense for evaluating this *expression tree*?

- *Pre-order*: root, left subtree, right subtree
- *In-order*: left subtree, root, right subtree
- *Post-order*: left subtree, right subtree, root



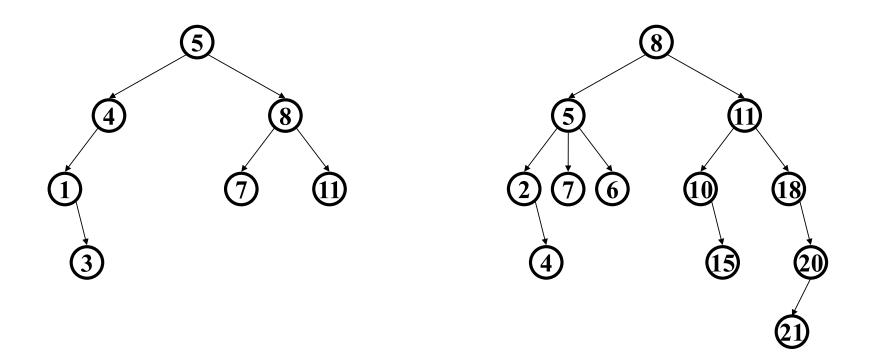
Binary Search Tree (BST) Data Structure

- Structure property (binary tree)
 - Each node has \leq 2 children
 - Result: keeps operations simple
- Order property

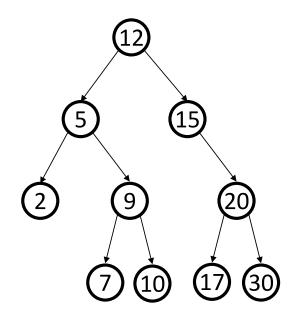


• Result: straight-forward to find any given value

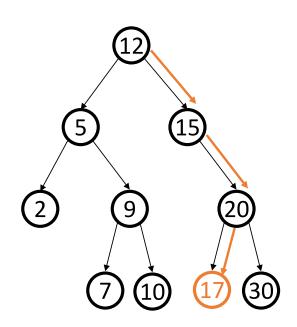
A binary search tree is a type of binary tree (but not all binary trees are binary search trees!) Practice: are these BSTs?



How do we find (value) in BST's?



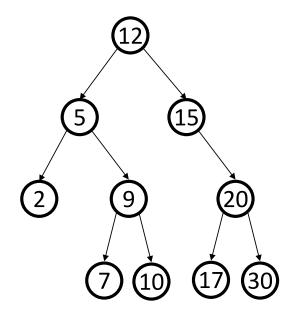
find in BST: Recursive Version



Data find(Data value, Node root) { if(root == null) return null; if(key < root.value)</pre> return find(value, root.left); if(key > root.value) return find(value, root.right); return root.value;

What is the running time?

find in BST: Iterative Version

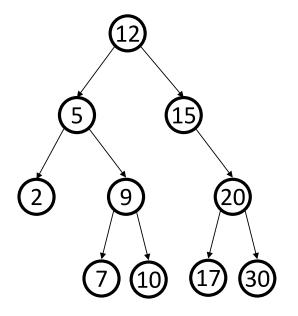


```
Data find(Object value, Node root){
  while(root != null
         && root.value != value) {
      if (value < root.value)
      root = root.left;
    else (value > root.value)
      root = root.right;
  }
  if(root == null)
    return null;
  return root.value;
}
```

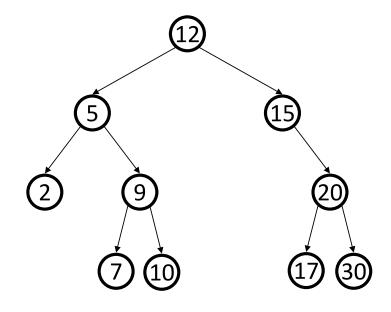
Other BST "Finding" Operations

findMin: Find minimum node

findMax: Find maximum node



insert in BST



insert(13)
insert(8)
insert(31)

Worst-case running time:

Practice with insert, primer for delete

Start with an empty tree. Insert the following values, in the given order: 14, 2, 5, 20, 42, 1, 4, 16

Then, changing as few nodes as possible, delete the following in order: 42 , 14

What would the root of the resulting tree be?

- **A.** 2
- **B.** 4
- **C.** 5
- **D.** 16

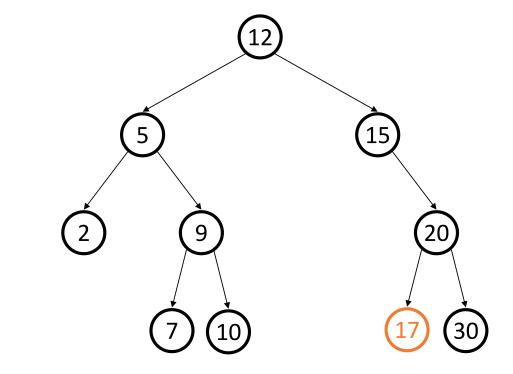
(Extra space for scratch work / notes)

delete in BST

- Why might delete be harder than insert?
- Basic idea:
- Three potential cases to fix:

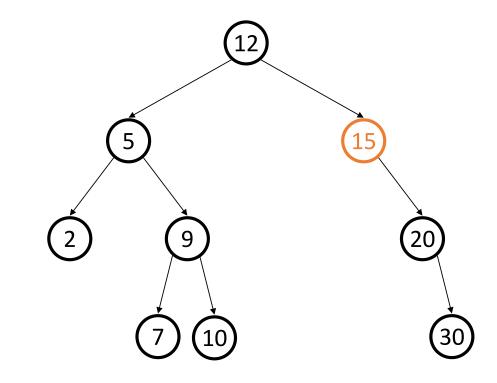
delete case: Leaf

delete(17)



delete case: One Child

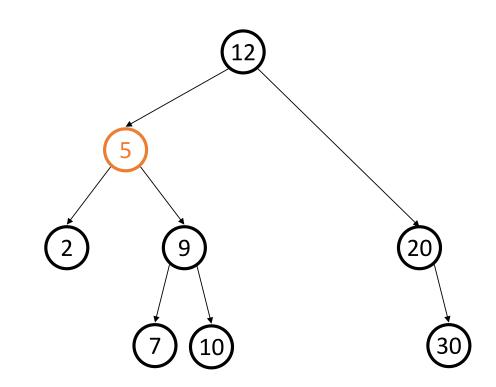
delete(15)



delete case: Two Children

delete(5)

What can we replace 5 with?



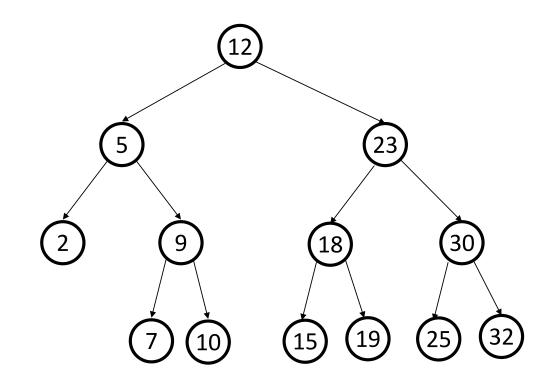
delete case: Two Children

What can we replace the node with?

Options:

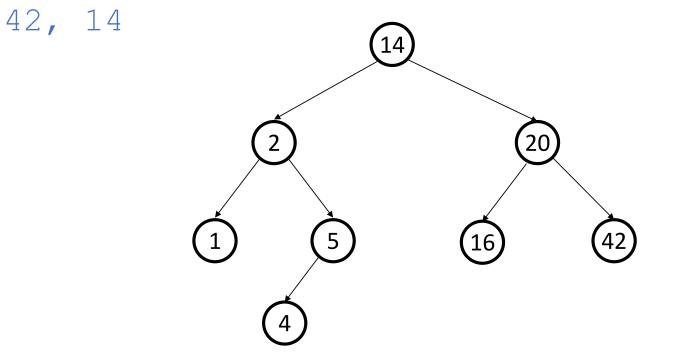
delete case: Two Children (example #2)

delete(23)



REVISITED Practice with insert, primer for delete

Changing as few nodes as possible, delete the following in order:



delete through Lazy Deletion

- Lazy deletion can work well for a BST
 - Simpler
 - Can do "real deletions" later as a batch
 - Some inserts can just "undelete" a tree node

• But

- Can waste space and slow down find operations
- Make some operations more complicated:
 - e.g., findMin and findMax?

buildTree for BST

Let's consider buildTree (insert values starting from an empty tree)

Insert values 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST

- If inserted in given order, what is the tree?
- What big-O runtime for buildTree on this sorted input?
- Is inserting in the reverse order any better?

buildTree for BST

Insert values 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST

What we if could somehow re-arrange them

- median first, then left median, right median, etc.
 5, 3, 7, 2, 1, 4, 8, 6, 9
- What tree does that give us?
- What big-O runtime?