CSE 373: Data Structures and Algorithms

Lecture 9: Binary Search Trees

Instructor: Lilian de Greef
Quarter: Summer 2017



Today

* Announcements

* Binary Trees
* Height
* Traversals

* Binary Search Trees
Definition

find

insert

delete
buildTree



Announcements

* Change to office hours for just this week

* Tuesday’s “office” office hours / private office hours
* 12:00pm —12:30pm
* (notat 1:30pm!)
* Dorothy and | trading 2:00pm - 3:00pm office hours this week

 Same time and location

* Homework 1 Statistics
* Mean: 39.7/50 (+1 extra credit)
* Median: 42.5/50 (+0 extra credit)
* Max: 49/50 (+1) or 47/50 (+4)
e Standard Deviation: 10.18



Reminder: Tree terminology

Node / Vertex 0

Left subtree e G
(8)

Edges </ Q\n — Leaves

Root

Right subtree




Binary Trees

* Binary tree: Each node has at most 2 children (branching factor 2)

* Binary tree is
* Aroot (with data)
* A left subtree (may be empty)
* Aright subtree (may be empty)

e Special Cases:

Complete Tree Perfect Tree



(Last week’s practice) What does the following method do?
int height (Node root) {
if (root == null),
return -1;

return 1 + max(height (root.left),
height (root.right) ;

It calculates the number of nodes in the tree.
It calculates the depth of the nodes.

It calculates the height of the tree.

o0 ® »

. It calculates the number of leaves in the tree.



Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h:
* max # of leaves:

* max # of nodes:

* min # of leaves:

* min # of nodes:

For n nodes, the min height (best-case) is

the max height (worst-case) is



Tree Traversals

A traversal is an order for visiting all the nodes of a tree

* Pre-order: root, left subtree, right subtree /C'AD\

* In-order: left subtree, root, right subtree e

* Post-order: left subtree, right subtree, root S



Tree Traversals: Practice

Which one makes sense for evaluating this expression tree?

* Pre-order: root, left subtree, right subtree R

* In-order: left subtree, root, right subtree R @
* Post-order: left subtree, right subtree, root @ @



Binary Search Tree (BST) Data Structure

 Structure property (binary tree)
* Each node has < 2 children
* Result: keeps operations simple

* Order property

* Result: straight-forward to find any given value

A binary search tree is a type of binary tree
(but not all binary trees are binary search trees!)



Practice: are these BSTs?




How do we find (value) in BST’s?

QW O



find In BST: Recursive Version

Data find(Data value, Node root) {
if (root == null)

@ return null;

1if (key < root.value)
return find(value, root.left);

e @ if (key > root.value)
return find(value, root.right);
return root.value;

}

What is the running time?



find In BST: lterative Version

Data find (Object value, Node root) {
while (root != null
&& root.value != value) {
1if (value < root.value)
root = root.left;
else (value > root.value)
root = root.right;
}
if (root == null)
return null;
return root.value;

}



Other BST “Finding” Operations

findMin: Find minimum node
findMax: Find maximum node 9 R

(8)
QW O



insert in BST

insert (13)
insert (8)
‘/;:K\ C)\\ insert (31)

@ @ Q0
oo

Worst-case running time:



Practice with insert, primer fordelete

Start with an empty tree. Insert the following values, in the given order:
14, 2, 5, 20, 42, 1, 4, 1606

Then, changing as few nodes as possible, delete the following in order:
42, 14

What would the root of the resulting tree be?
A 2

B. 4
C. 5
D. 16



(Extra space for scratch work / notes)



delete in BST

* Why might delete be harder than insert?

e Basic idea:

* Three potential cases to fix:



delete case: Leaf

delete (17) /@9\
&

O



delete case: One Child

delete (1D5) /@E\
A&
©
QI



delete case: Two Children

delete (5) @

What can we

replace 5 with? / \
@
@

3



delete case: Two Children

What can we replace the node with?

Options:



delete case: Two Children (example #2)

delete (23)




: : . : REVIS
Practice with insert, primer for delete>/Tgp

Changing as few nodes as possible, delete the following in order:

42, 14
(14

$ %



delete through Lazy Deletion

* Lazy deletion can work well for a BST
e Simpler
* Can do “real deletions” later as a batch
* Some inserts can just “undelete” a tree node

* But
e Can waste space and slow down find operations

* Make some operations more complicated:
* e.g.,, £findMin and £findMax?



buildTree for BST

Let’s consider buildTree (insert values starting from an empty tree)

Insert values 1, 2, 3,4,5,6, 7,8,9 into an empty BST

* If inserted in given order,
what is the tree?

* What big-O runtime for
buildTree on this sorted input?

* Is inserting in the reverse order any better?



buildTree for BST

Insert values 1, 2, 3,4,5,6, 7, 8,9 into an empty BST

What we if could somehow re-arrange them
* median first, then left median, right median, etc.

5,3,7,2,1,4,8,6,9

* What tree does that give us?

* What big-O runtime?



