
Instructor:	Lilian	de	Greef
Quarter:	Summer	2017

CSE	373:	Data	Structures	and	Algorithms
Lecture	9:	Binary	Search	Trees



Today

• Announcements
• Binary	Trees
• Height
• Traversals

• Binary	Search	Trees
• Definition
• find
• insert
• delete
• buildTree



Announcements

• Change	to	office	hours	for	just	this	week
• Tuesday’s	“office”	office	hours	/	private	office	hours

• 12:00pm	– 12:30pm
• (not	at	1:30pm!)

• Dorothy	and	I	trading	2:00pm	- 3:00pm	office	hours	this	week
• Same	time	and	location

• Homework	1	Statistics
• Mean:	39.7/50		(+1	extra	credit)
• Median:	42.5/50		(+0	extra	credit)
• Max:	49/50	(+1)		or		47/50		(+4)
• Standard	Deviation:	10.18





Binary	Trees
Continued	– part	2!



Reminder:	Tree	terminology

A

E

B

D F

C

G

IH

LJ MK N

Node	/	Vertex

Edges

Root

Leaves

Left	subtree
Right	subtree



Binary	Trees
• Binary	tree:		Each	node	has	at	most	2	children	(branching	factor	2)
• Binary	tree	is

• A	root	(with	data)
• A	left	subtree	(may	be	empty)	
• A	right	subtree	(may	be	empty)	

• Special	Cases:



(Last	week’s	practice)	What	does	the	following	method	do?

int mystery(Node node){
if (node == null),

return -1;
return 1 + max(mystery(node.left), 

mystery(node.right);
}

A. It	calculates	the	number	of	nodes	in	the	tree.

B. It	calculates	the	depth	of	the	nodes.

C. It	calculates	the	height	of	the	tree.

D. It	calculates	the	number	of	leaves	in	the	tree.



(Last	week’s	practice)	What	does	the	following	method	do?

int height(Node root){
if (root == null),

return -1;
return 1 + max(height(root.left), 

height(root.right);
}

A. It	calculates	the	number	of	nodes	in	the	tree.

B. It	calculates	the	depth	of	the	nodes.

C. It	calculates	the	height	of	the	tree.

D. It	calculates	the	number	of	leaves	in	the	tree.



Binary	Trees:	Some	Numbers
Recall:	height	of	a	tree	=	longest	path	from	root	to	leaf	(count	edges)

For	binary	tree	of	height	h:

• max	#	of	leaves:

• max	#	of	nodes:	

• min	#	of	leaves:

• min	#	of	nodes:

For	n nodes,	the	min	height	(best-case)	is

the	max	height	(worst-case)	is



Tree	Traversals

A	traversal is	an	order	for	visiting	all	the	nodes	of	a	tree

• Pre-order: root,	left	subtree,	right	subtree

• In-order: left	subtree,	root,	right	subtree

• Post-order: left	subtree,	right	subtree,	root

A

B

D E

C

F

G



Tree	Traversals:	Practice

Which	one	makes	sense	for	evaluating	this	expression	tree?

• Pre-order: root,	left	subtree,	right	subtree

• In-order: left	subtree,	root,	right	subtree

• Post-order: left	subtree,	right	subtree,	root

+

*

2 4

5



Binary	Search	Trees
A	kind	of	binary	tree!



4

121062

115

8

14

13

7 9

• Structure	property	(binary	tree)
• Each	node	has	£ 2 children
• Result:	keeps	operations	simple

• Order	property

• Result:	straight-forward	to	find	any	given	value

A	binary	search tree is	a	type	of	binary	tree	
(but	not	all	binary	trees	are	binary	search	trees!)

Binary	Search Tree	(BST)	Data	Structure



3

1171

84

5

4

181062

115

8

20

21

7

15

Practice:	are	these	BSTs?



How	do	we	find(value) in	BST’s?

2092

155

12

307 1710



find in	BST:	Recursive	Version

What	is	the	running	time?
2092

155

12

307 1710

Data find(Object value, Node root){
if(root == null)

return null;
if(key < root.key)

return find(value, root.left);
if(key > root.key)

return find(value, root.right);
return root.data;

}



find in	BST:	Iterative	Version

2092

155

12

307 1710

Data find(Object value, Node root){
while(root != null

&& root.value != value) {
if (value < root.value)

root = root.left;
else (value > root.value)

root = root.right;
}
if(root == null)

return null;
return root.value;

}



Other	BST	“Finding”	Operations

findMin:	Find	minimum node

findMax:	Find	maximum	node 2092

155

12

307 1710



insert in	BST

insert(13)
insert(8)
insert(31)

Worst-case	running	time:

2092

155

12

307 1710



Practice	with	insert,	primer	for	delete

Start	with	an	empty	tree.	Insert	the	following	values,	in	the	given	order:
14, 2, 5, 20, 42, 1, 4, 16

Then,	changing	as	few	nodes	as	possible,	delete	the	following	in	order:
42, 14

What	would	the	root	of	the	resulting	tree	be?
A. 2
B. 4
C. 5
D. 16



Then,	changing	as	few	nodes	as	possible,	delete	the	following	in	order:
42, 14

Practice	with	insert,	primer	for	delete

Start	with	an	empty	tree.	Insert	the	following	values,	in	the	given	order:
14, 2, 5, 20, 42, 1, 4, 16



delete in	BST

• Why	might	delete be	harder	than	insert?

• Basic	idea:

• Three	potential	cases	to	fix:



delete case:	Leaf

delete(17)

2092

155

12

307 1710



delete case:	One	Child

delete(15)

2092

155

12

307 10



delete case:	Two	Children

delete(5)

2092

5

12

307 10

What	can	we	
replace	5 with?



delete case:	Two	Children

What	can	we	replace	the	node	with?

Options:



delete case:	Two	Children	(example	#2)

delete(23)

3092

235

12

7 10

18

1915 3225



Changing	as	few	nodes	as	possible,	delete	the	following	in	order:
42, 14

Practice	with	insert,	primer	for	delete

4251

202

14

4

16



delete through	Lazy	Deletion

• Lazy	deletion	can	work	well	for	a	BST
• Simpler
• Can	do	“real	deletions”	later	as	a	batch
• Some	inserts	can	just	“undelete”	a	tree	node

• But
• Can	waste	space	and	slow	down	find	operations
• Make	some	operations	more	complicated:

• e.g.,	findMin and	findMax?



buildTree for	BST

Let’s	consider	buildTree (insert	values	starting	from	an	empty	tree)

Insert	values	1,	2,	3,	4,	5,	6,	7,	8,	9		into	an	empty	BST

• If	inserted	in	given	order,	
what	is	the	tree?		

• What	big-O	runtime	for	
buildTree on	this	sorted	input?

• Is	inserting	in	the	reverse	order	any	better?


