CSE 373: Data Structures and Algorithms

Lecture 9: Binary Search Trees

Instructor: Lilian de Greef
Quarter: Summer 2017
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Announcements

* Change to office hours for just this week

* Tuesday’s “office” office hours / private office hours
* 12:00pm —12:30pm
* (notat 1:30pm!)
* Dorothy and | trading 2:00pm - 3:00pm office hours this week

 Same time and location

* Homework 1 Statistics
* Mean: 39.7/50 (+1 extra credit)
* Median: 42.5/50 (+0 extra credit)
* Max: 49/50 (+1) or 47/50 (+4)
e Standard Deviation: 10.18
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Binary Trees

Continued — part 2!



Reminder: Tree terminology

Node / Vertex

Root

Left subtree
Right subtree

Edges Leaves



Binary Trees

* Binary tree: Each node has at most 2 children (branching factor 2)

* Binary tree is
* Aroot (with data)
* A left subtree (may be empty)
* Aright subtree (may be empty)

e Special Cases:

Complete Tree Perfect Tree



(Last week’s practice) What does the following method do?
int mystery (Node node) {
1f (node == null),
return -1;

return 1 + max(mystery(node.left),
mystery (node.right) ;

It calculates the number of nodes in the tree.
It calculates the depth of the nodes.

It calculates the height of the tree.

o0 ® »

. It calculates the number of leaves in the tree.
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(Last week’s practice) What does the following method do? LT

int height (Node root) {
if (root == null), —
return -1;

return 1 + max(heightleft)
height oot .right) ;

B. It calculates the depth of the nodes.

@Iculates the height of the tree.

D. It calculates the number of leaves in the tree.
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Recall: height of a tree = longest path from root to leaf (count edges)
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—> Pre-order: root, left subtree, right subtree
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* In-order: left subtree, root, right subtree
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* Post-order: left subtree, right subtree, root
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Tree Traversals: Practice

Which one makes sense for evaluating this expression tree?

* Pre-order: root, left subtree, right subtree
faz d s Q.

* In-order: left subtree, root, right subtree & R @

9 % 4 + <
* Post-order: left subtree, right subtree, root @ @
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Binary Search Trees



Binary Search Tree (BST) Data Structure

 Structure property (binary tree)
* Each node has < 2 children
* Result: keeps operations simple

* Order property
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A binary search tree is a type of binary tree
(but not all binary trees are binary search trees!)



Practice: are these BSTs?




How do we find (value) in BST’s?
Lnd ()
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find In BST: lterative Version

T A
Data find (Olgsct value, Node root) {
while (root != null
&& root.value != value) {
i1f (value < root.value)
root = root.left;
else (value > root.value)
root = root.right;
}
if (root == null)
return null;
return root.value;

}



Other BST “Finding” Operations

findMin: Find minimum node
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findMax: Find maximum node
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insert in BST
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insert (8)
insert (31)
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Practice with insert, primer fordelete

Start with an empty tree. Insert the following values, in the given order:
14, 2, 5, 20, 42, 1, 4, 1606

Then, changing as few nodes as possible, delete the following in order:
42, 14

What would the root of the resulting tree be?
A 2

B. 4
C. 5
D. 16



Practice with insert, primer fordelete
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delete in BST

* Why might delete be harder than insert? (A - l K
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* Three potential cases to fix:
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delete case: Leaf

delete (17) /@9\
&
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delete case: One Child

delete (15) /@2\&
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delete case: Two Children

delete (5) @
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delete case: Two Children

What can we replace the node with?

Options:
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delete case: Two Children (example #2)

delete (23)
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Practice with insert, primer for delete>/Tgp

Changing as few nodes as possible, delete the following in order:
2, 14
4




delete through Lazy Deletion

* Lazy deletion can work well for a BST
e Simpler
* Can do “real deletions” later as a batch
* Some inserts can just “undelete” a tree node

* But
e Can waste space and slow down find operations

* Make some operations more complicated:
* e.g.,, £findMin and £findMax?



buildTree for BST

Let’s consider buildTree (insert values starting from an empty tree)

S [/ g‘
Insert values 1, 2, 3,4,5,6, 7,8,9 into an empty BST
* If inserted in given order, [ ®\
what is the tree? Sk\clc i ©.
"
* What big-O runtime for .

buildTree on this sorted input?

* Is inserting in the reverse order any better?



