CSE 373: Data Structures and Algorithms

Lecture 9: Binary Search Trees

Instructor: Lilian de Greef
Quarter: Summer 2017

Today

- Announcements
- Binary Trees
- Height
- Traversals
- Binary Search Trees
- Definition
- find
- insert
- delete
- buildTree

Announcements

- Change to office hours for just this week
- Tuesday's "office" office hours / private office hours
- 12:00pm-12:30pm
- (not at 1:30pm!)
- Dorothy and I trading 2:00pm - 3:00pm office hours this week
- Same time and location
- Homework 1 Statistics
- Mean: 39.7/50 (+1 extra credit)
- Median: 42.5/50 (+0 extra credit)
- Max: 49/50 (+1) or 47/50 (+4)
- Standard Deviation: 10.18

Homework 1 Scores (colored by extra credit score)

Binary Trees

Continued - part 2!

Reminder: Tree terminology

Binary Trees

- Binary tree: Each node has at most 2 children (branching factor 2)
- Binary tree is
- A root (with data)
- A left subtree (may be empty)
- A right subtree (may be empty)
- Special Cases:

Complete Tree

(Last week's practice) What does the following method do?

```
int mystery(Node node) {
    if (node == null),
            return -1;
    return 1 + max(mystery(node.left),
                                    mystery(node.right);
}
```

A. It calculates the number of nodes in the tree.
B. It calculates the depth of the nodes.
C. It calculates the height of the tree.
D. It calculates the number of leaves in the tree.

$$
\text { height }=13 \max (1,3)
$$

(Last week's practice) What does the following method do? $=4$

```
int height(Node root){
    if (root == null),
        return -1;
    return 1 + max(height(root) left),
                height (xoot.right);
}
```

A. It calculates the number of nodes in the tree.
B. It calculates the depth of the nodes.
C. It calculates the height of the tree.

Binary Trees: Some Numbers

$$
1+2+4+8+\cdots-2^{n}=2^{n+1}-1
$$

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h :

For n nodes, the min height (best-case) is
$O(\log n)$ the max height (worst-case) is $O(n)$ where $n=\mathbb{F}$ of nodes

Tree Traversals

A traversal is an order for visiting all the nodes of a tree
\rightarrow Pre-order: root, left subtree, right subtree $A B D E G C F$

- In-order: left subtree, root, right subtree

$$
D B G E A C F
$$

- Post-order: left subtree, right subtree, root

$$
D G E B F C A
$$

Tree Traversals: Practice

Which one makes sense for evaluating this expression tree?

- Pre-order: root, left subtree, right subtree

$$
+\quad * 245
$$

- In-order: left subtree, root, right subtree

$$
2 * 4+5
$$

- Post-order: left subtree, right subtree, root

Binary Search Trees

A kind of binary tree!

Binary Search Tree (BST) Data Structure

- Structure property (binary tree)
- Each node has ≤ 2 children
- Result: keeps operations simple
- Order property
- All values in left subtree smaller than the node's
- All values in right subtree

- Result: straight-forward to find any given value

A binary search tree is a type of binary tree (but not all binary trees are binary search trees!)

Practice: are these BSTs?

How do we find (value) in BST's?

find in BST: Recursive Version

find in BST: Iterative Version


```
    Data
Data find(Obct value, Node root){
    while(root != null
            && root.value != value) {
        if (value < root.value)
        root = root.left;
        else (value > root.value)
        root = root.right;
    }
    if(root == null)
        return null;
    return root.value;
}
```

Other BST "Finding" Operations
findMin: Find minimum node leftmost node
findMax: Find maximum node

insert in BST

insert(13)
insert(8)
insert(31)
Insertions
bopen become leaves Worst-case running time:

$$
O(n)
$$

Practice with insert, primer for delete

Start with an empty tree. Insert the following values, in the given order:
$14,2,5,20,42,1,4,16$
Then, changing as few nodes as possible, delete the following in order:
42, 14
What would the root of the resulting tree be?
A. 2
B. 4
C. 5
D. 16

Practice with insert, primer for delete

H4 " 2A 5, 20, 42, 1, 4, 16

delete in BST

- Why might delete be harder than insert?

You don't want to abandon your child nodes!

- Basicidea: find the node to remove, the "fix" the tree so the it's still a BST
- Three potential cases to fix:
- Node has no children (leaf)
- Node has one child
- Node has two children

delete case: Leaf

delete(17)

delete case: One Child

delete(15)

delete case: Two Children

delete (5)

What can we
replace 5 with?

\%
delete case: Two Children

What can we replace the node with?
Options:
successor - minimum node from the right subtree
predecessor - maximum node Loom the left subtree

delete case: Two Children (example \#2)

delete(23)

REVISITED lete

Changing as few nodes as possible, delete the following in order: 4 14

delete through Lazy Deletion

- Lazy deletion can work well for a BST
- Simpler
- Can do "real deletions" later as a batch
- Some inserts can just "undelete" a tree node
- But
- Can waste space and slow down find operations
- Make some operations more complicated:
- e.g., findMin and findMax?

buildTree for BST

Let's consider buildTree (insert values starting from an empty tree)

- If inserted in given order, what is the tree?
- What big-O runtime for
 buildTree on this sorted input?
- Is inserting in the reverse order any better?

