CSE 373: Data Structures and Algorithms

Lecture 9: Binary Search Trees

Instructor: Lilian de Greef
Quarter: Summer 2017

Today

* Announcements

* Binary Trees
* Height
* Traversals

* Binary Search Trees
Definition

find

insert

delete
buildTree

Announcements

* Change to office hours for just this week

* Tuesday’s “office” office hours / private office hours
* 12:00pm —12:30pm
* (notat 1:30pm!)
* Dorothy and | trading 2:00pm - 3:00pm office hours this week

 Same time and location

* Homework 1 Statistics
* Mean: 39.7/50 (+1 extra credit)
* Median: 42.5/50 (+0 extra credit)
* Max: 49/50 (+1) or 47/50 (+4)
e Standard Deviation: 10.18

Homework 1 Scores (colored by extra credit score)
10

S

Count of Number of Records
(0]

3

2

| I I

o T I
24 26 28 30 32 34 36 38 40 42 44 46 48 50

Score (out of 50, without extra credit)

Extra Credit

0 4

Binary Trees

Continued — part 2!

Reminder: Tree terminology

Node / Vertex

Root

Left subtree
Right subtree

Edges Leaves

Binary Trees

* Binary tree: Each node has at most 2 children (branching factor 2)

* Binary tree is
* Aroot (with data)
* A left subtree (may be empty)
* Aright subtree (may be empty)

e Special Cases:

Complete Tree Perfect Tree

(Last week’s practice) What does the following method do?
int mystery (Node node) {
1f (node == null),
return -1;

return 1 + max(mystery(node.left),
mystery (node.right) ;

It calculates the number of nodes in the tree.
It calculates the depth of the nodes.

It calculates the height of the tree.

o0 ® »

. It calculates the number of leaves in the tree.

AN
= O max(1 B
(Last week’s practice) What does the following method do? LT

int height (Node root) {
if (root == null), —
return -1;

return 1 + max(heightleft)
height oot .right) ;

B. It calculates the depth of the nodes.

@Iculates the height of the tree.

D. It calculates the number of leaves in the tree.

N Lot |

. L
Binary Trees: Some Numbers A2 tfe 72 72 -

<

Recall: height of a tree = longest path from root to leaf (count edges)
WJev ol -cuse

: : ¥>\(~ES — ©
For binary tree of height h: S

N

* max # of leaves: [| %} -
h _

* max # of nodes: Z - (O)D\O g

R ¢
* min # of leaves: /L J \3& >
* min # of nodes: l/\—r (OE O
For n nodes, the min height (best-case) is () (/g"’ﬂ ‘/‘w \',\QZ%LJ(= 3

the max height (worst-case) is () (m)

Q,\;\'\.LV*Lnl’t{ ofC V\/OCQ{(B

N o LS
ht ! /O 5 /S
Tree Traversals 2 -1 =1 AT
ZM\ - ntl 0/\> ?\bhc f\v__

—> Pre-order: root, left subtree, right subtree
A B Drtaec F
* In-order: left subtree, root, right subtree

DeoeAckH

* Post-order: left subtree, right subtree, root

DaESECA

Tree Traversals: Practice

Which one makes sense for evaluating this expression tree?

* Pre-order: root, left subtree, right subtree
faz d s Q.

* In-order: left subtree, root, right subtree & R @

9 % 4 + <
* Post-order: left subtree, right subtree, root @ @

2 4 ¢ S 4

Binary Search Trees

Binary Search Tree (BST) Data Structure

 Structure property (binary tree)
* Each node has < 2 children
* Result: keeps operations simple

* Order property
_ ZAI(VA\V\LS wn ézﬂa TM(O+T<{
SW\@(W —dran e hode's v« 9 @ @ @

— 7Al\ \/m\\/\'(f N (LS k
. ResuIt:oéc\ggigﬁ(fo\rcvarﬂ%ﬁnh‘any@ﬁeﬁaﬁe\‘ﬂ v

A binary search tree is a type of binary tree
(but not all binary trees are binary search trees!)

Practice: are these BSTs?

How do we find (value) in BST’s?
Lnd ()

2 < 13
1S< V3

70> F

xE<E {/
_ i
find in BST: Recursive Version ; gl
D at
<\<ﬂ\ JU;(;\> Data find (Obssect value, Node root) {

if (root ==—s4

CV\4 (lﬁyB return @ Al e
< rtturn data 1f(keyroot k@q

return find(value, root left);
1f(key'é2;oot key) ValuR —

return find(value, root.right);
return root.desa; —

} - \/QKVVC/
What is the running time? N = N,Li

EO\(QV\M A~ T O(/{/OSV\\
QIR (L6194~ Cale - OCV\\

R apens S oprided e

O— 0 >0—>0—>0

Ve

find In BST: lterative Version

T A
Data find (Olgsct value, Node root) {
while (root != null
&& root.value != value) {
i1f (value < root.value)
root = root.left;
else (value > root.value)
root = root.right;
}
if (root == null)
return null;
return root.value;

}

Other BST “Finding” Operations

findMin: Find minimum node

Q«CHMO?* V\O&L

findMax: Find maximum node

({S\& NI V\Oc({

insert in BST

P
/@)\

®

(9)

insert (13)
insert (8)
insert (31)

LeCowne (zarven
Worst-case running time:

O(V\U N

Practice with insert, primer fordelete

Start with an empty tree. Insert the following values, in the given order:
14, 2, 5, 20, 42, 1, 4, 1606

Then, changing as few nodes as possible, delete the following in order:
42, 14

What would the root of the resulting tree be?
A 2

B. 4
C. 5
D. 16

Practice with insert, primer fordelete

Bhart, whbrgingnaptheivemdrsart plosdibllevdele ta hinesfol dheng\aroodder:

u2, 424 5, 20, 42, 1, 4,
7

31
s ©® &

delete in BST

* Why might delete be harder than insert? (A - l K
\ OLQM’/V u@l/r} —0 O\loalf\ﬁ(»()\/\ YO\AY cH\ o \
0 \ A \/‘bc(\gf |

* Basic idea: ,(I\,\c& the V\OCCL o e ove

)
A N PR L e
“s s\l A ST

* Three potential cases to fix:

*NOAL Las 1o Q(«a\c&\,—(m (lﬂa—(>
- No!\L \’\9\3 oW C(’\‘\Gg

o NOC&L MS Aiuo o('\\ké\\r"(‘/\

delete case: Leaf

delete (17) /@9\
&

O® KNG

delete case: One Child

delete (15) /@2\&

O, QO
O

delete case: Two Children

delete (5) @

3
-~

A
b c

What can we

replace 5 with? /

r(b*uﬁ/j

Sytefs

- Oz

delete case: Two Children

What can we replace the node with?

Options:
CesSey — mumyv o\ C“C”‘
s %’\/_L (\%L-’\ S~ /%M
(—QCQ\—QM&Q)Y — VA KON U e o du I
! —tha QLQ Snlrtir<e

delete case: Two Children (example #2)

delete (23)

: : . : REVIS
Practice with insert, primer for delete>/Tgp

Changing as few nodes as possible, delete the following in order:
2, 14
4

delete through Lazy Deletion

* Lazy deletion can work well for a BST
e Simpler
* Can do “real deletions” later as a batch
* Some inserts can just “undelete” a tree node

* But
e Can waste space and slow down find operations

* Make some operations more complicated:
* e.g.,, £findMin and £findMax?

buildTree for BST

Let’s consider buildTree (insert values starting from an empty tree)

S [/ g‘
Insert values 1, 2, 3,4,5,6, 7,8,9 into an empty BST
* If inserted in given order, [®\
what is the tree? Sk\clc i ©.
"
* What big-O runtime for .

buildTree on this sorted input?

* Is inserting in the reverse order any better?

