CSE 373: Data Structures and Algorithms

Lecture 8: Finish Hash Table Collisions, Intro to Trees

Instructor: Lilian de Greef
Quarter: Summer 2017

Today

* Announcements

* Wrap up Hash Table Collisions

e Open Addressing: Quadratic Probing
* Open Addressing: Double Hashing
e Rehashing

* Introduce Trees
* Generic Trees
* Binary Trees

Announcements

* Homework 3 is out
* Pair-programming opportunity!
 Start early

* Anonymous feedback mechanism
available on website

* Homework from long weekend
* Forgot to ask for it last lecture

* Pile on top of slide print-outs on
your way out

* Ungraded, but am interested to see

é

Jl uw CSE373, Summer 2017 X Lilian

C' @ Secure https://courses.cs.washington.edu/courses/cse37... ¢ @
2:00pm and by appointment in CSE 220

Contact Information

Question on homework or course material? Find or start a post on Piazza!

When posting to the class, leave out any code or parts of a solution to the
homework (even if it's incomplete). For private questions (e.g. grades, code- or
solution-specific questions, etc.), post to the instructors only. If you're feeling shy
about posting something to the class, you can always post anonymously.

Because Piazza is highly catered to getting you help fast and efficiently from
classmates, TAs, and the instructor, you'll get a faster response there than if you
email any of us individually. This is also true for private posts, as both TAs and
instructors can see them.

https://piazza.com/washington/summer2017/cse373

For Lilian's eyes only? Email me with "[CSE 373]" at the beginning of the subject
line. | will check my email at least once a day, so you can expect a response to

instructor-only emails (addressed to Idegreef [at] cs.washington.edu)i
hours.

Course Email List: You should receive email sent to the col
his Tist. More info

Anonymous Feedback (goes only to the instructor)

l Lecture Materials

Hash Table Collisions

Finishing up Open Addressing

Collision resolution that uses the empty space in the table

Open Addressing: Quadratic Probing

* We can avoid primary clustering by changing the probe function
(h(key) + £(1)) % TableSize

I
'_l.

A common technique is quadratic probing: £ (1)
* So probe sequence is:
* 0% probe: h (key) % TableSize
1t probe: (h(key)+ 1) % TableSize
2"d probe: (h (key)+ 4) % TableSize
34 probe: (h (key)+ 9) % TableSize

it probe: (h (key) + 1?) % TableSize

* Intuition: Probes quickly “leave the neighborhood”

Quadratic Probing Example #2

0 TableSize = 7

1 Insert:

2 76 (76 % 7 = 6)

3 40 (40 % 7 = 5)

4 48 (48 % 7 = 6)

5 5 (5%7=5)

6 55 (55% 7 =6)
47 (47 % 7 = 5)

ith probe: (h(key) + 12) % TableSize

Quadratic Probing: Bad News, Good News

 Bad news:

* Quadratic probing can cycle through the same full indices, never terminating
despite table not being full

* Good news:

* If TableSize is prime and A < %, then quadratic probing will find an empty
slotin at most TableSize/2 probes

* So: If you keep A <% and TableSize is prime, no need to detect cycles

* Proof is posted online next to lecture slides
 Also, slightly less detailed proof in textbook
* Keyfact: ForprimeTand 0 < 1i,j < T/2wherei # 7,
(k + i?) $ T # (k + J?) % T (i.e.noindex repeat)

Clustering Part 2

* Quadratic probing does not suffer from primary clustering:
no problem with keys initially hashing to the same neighborhood

e But it’s no help if keys initially hash to the same index:

This is called

e Can avoid secondary clustering

Open Addressing: Double Hashing

Idea:

* Given two good hash functions h and g, it is very unlikely that for some
key, h (key) == g(key)

* So make the probe function £ (i) = i*g(key)

Probe sequence:
Oth probe: h (key) % TableSize

* 1stprobe: (h(key) + g(key)) % TableSize
e 2" probe:
* 3rd probe:

ith probe: (h (key) + i*g(key)) % TableSize

Double Hashing Analysis

* Intuition: Because each probe is “jumping” by g (key) each time, we

“leave the neighborhood” and “go different places from other initial
collisions”

* Requirements for second hash function:

* Example of double hash function pair that works:
* h(key) = key 5 p
* g(key) = g - (key % Q)
e 2 < g<p
* pand gare prime

More Double Hashing Facts

e Assume “uniform hashing”
e Means probability of g (keyl) % p == g(key2) % p isl/p

* Non-trivial facts we won’t prove:
Average # of probes given A (in the limit as TableSize - w)

* Unsuccessful search (intuitive): -

1

* Successful search (less intuitive): %Ioge(nj

e Bottom line: unsuccessful bad (but not as bad as linear probing), but
successful is not nearly as bad

Charts

Uniform Hashing

5.00

4.50 /
4.00 /

3.50
3.00 /

2.50
2.00 e

1.50 _—

1.00 -

Average # of Probes

0.50

0.00

0.00 0.20 0.40 0.60 0.80 1.00

Load Factor

Uniform Hashing

120.00

100.00

0
o
o
ls]

60.00

Average # of Probes

NS
e
o o
S o

/

-

0.00

0.00 0.20 0.40 0.60 0.80 1.00

Load Factor

uniform hashing
found

uniform hashing
not found

———uniform
hashing
found

uniform
hashing not
found

20.00
18.00
16.00
14.00
12.00
10.00
8.00
6.00
4.00
2.00
0.00

Average # of Probes

0.

350.00
300.00
250.00
200.00
150.00
100.00

Average # of Probes

50.00
0.00

Linear Probing

/ ———linear probing
// found
/ linear probing
/ not found
00 0.20 0.40 0.60 0.80 1.00
Load Factor
Linear Probing
———linear probing
found
linear probing
/ not found
0.00 0.20 0.40 0.60 0.80 1.00

Load Factor

Rehashing

Rehashing

* What do we do if the table gets too full?

 How do we copy over elements?

Rehashing

* What'’s “too full” in Separate Chaining?

* “Too full” for Open Addressing / Probing

Rehashing

* How big do we want to make the new table?

* Can keep a list of prime numbers in your code, since you likely won't
grow more than 20-30 times (2730 = 1,073,741,824)

Wrapping up Hash Tables

* A hash table is a data-structure for

* Some example uses of hash tables:

Another Data-Structure for Dictionaries?

Dictionary meaning:
 Set of (key, value) pairs
* Can compare keys

Dictionary operations:
* insert (key, value)
* delete (key)
e £ind (key)

Trees!

Trees

Are like linked-lists, but can have more than one “next”

Tree terms

Root (tree)

Leaves (tree)

Children (node)
Parent (node)
Siblings (node)
Ancestors (node)
Descendents (node)

Subtree (node)

Tree T

Tree terms
Depth (node)

Height (tree)

Degree (node)

Branching factor (tree)

Tree T

Practice with Height and Depth

’

Kinds of Trees
Certain terms define trees with specific structure

* Binary tree: Each node has at most

* n-ary tree: Each node has at most

* Perfect tree: Each row

* Complete tree: Each row completely full except

£ L

What is the height of a perfect binary tree with n nodes?
A complete 14-ary tree?

More Tree Terms

* There are many kinds of trees

* There are many kinds of binary trees

e A tree can be balanced or not
* A balanced tree with n nodes has a height of
e Different kinds of trees use different “balance conditions” to achieve this

(Bonus Material) Cool Uses & Kinds of Trees!

Binary Search Tree - dictionaries and
more

Syntax Tree - Constructed by
compilers and (implicitly) calculators
to parse expression

Binary Space Partition - Used in
almost every 3D video game to
determine what objects need to be
rendered.

Binary Tries - Used in almost every
high-bandwidth router for storing
router-tables.

For now, focusing on generic and binary search
trees (don't worry about the other ones listed
here -- | just think they're cool and want to share!)

(Bonus Material) Cool Uses & Kinds of Trees!

Game Tree - Used in computer chess
and other game Als

GGM Trees - Used in cryptographic
applications to generate a tree of
pseudo-random numbers.

Vantage-Point Trees - Used in
bioinformatics to store huge
databases of genomic data records

... and many more kinds and uses of

For now, focusing on generic and binary search
trees!

trees (don't worry about the other ones listed
here -- | just think they're cool and want to share!)

Binary Trees

* Binary tree: Each node has at most 2 children (branching factor 2)

e Binary tree is (A)

* Representation:

* For a dictionary, data will include a key and a value

Binary Tree Representation

A

left | right
subtree|subtree

— \C

left | right left | right
subtree|subtree subtree|subtree

left | right left | right left | right
tree|subtree subtree[subtree reelsubt

YTy N

Practice time! What does the following method do?
int mystery (Node node) {
1f (node == null),
return -1;

return 1 + max(mystery(node.left),
mystery (node.right) ;

It calculates the number of nodes in the tree.
It calculates the depth of the nodes.

It calculates the height of the tree.

o0 ® »

. It calculates the number of leaves in the tree.

Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h:
* max # of leaves:

* max # of nodes:

* min # of leaves:

* min # of nodes:

For n nodes, the min height (best-case) is

the max height (worst-case) is

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

* Pre-order: root, left subtree, right subtree /C'AD\

* In-order: left subtree, root, right subtree e

* Post-order: left subtree, right subtree, root S

Tree Traversals: Practice

Which one makes sense for evaluating this expression tree?

* Pre-order: root, left subtree, right subtree R

* In-order: left subtree, root, right subtree R @
* Post-order: left subtree, right subtree, root @ @

