
Instructor:	Lilian	de	Greef
Quarter:	Summer	2017

CSE	373:	Data	Structures	and	Algorithms
Lecture	8:	Finish	Hash	Table	Collisions,	Intro	to	Trees

Today

• Announcements
• Wrap	up	Hash	Table	Collisions
• Open	Addressing:	Quadratic	Probing
• Open	Addressing:	Double	Hashing
• Rehashing

• Introduce	Trees
• Generic	Trees
• Binary	Trees

Announcements

• Homework	3	is	out
• Pair-programming	opportunity!
• Start	early

• Anonymous	feedback	mechanism	
available	on	website

• Homework	from	long	weekend
• Forgot	to	ask	for	it	last	lecture
• Pile	on	top	of	slide	print-outs	on	
your	way	out
• Ungraded,	but	am	interested	to	see

Hash	Table	Collisions
Continued	-- Part	2!

Finishing	up	Open	Addressing
Collision	resolution	that	uses	the	empty	space	in	the	table

Open	Addressing:	Quadratic	Probing

• We	can	avoid	primary	clustering	by	changing	the	probe	function
(h(key) + f(i)) % TableSize

• A	common	technique	is	quadratic	probing:					f(i) = i2
• So	probe	sequence	is:
• 0th probe:		h(key) % TableSize
• 1st probe:	(h(key)+ 1) % TableSize
• 2nd probe:(h(key)+ 4) % TableSize
• 3rd probe:(h(key)+ 9) % TableSize
• …
• ith probe:	(h(key) + i2) % TableSize

• Intuition:	Probes	quickly	“leave	the	neighborhood”

Quadratic	Probing	Example	#2

TableSize =	7
Insert:

76	 (76	%	7	=	6)
40 (40	%	7	=	5)
48 (48	%	7	=	6)
5 (5	%	7	=	5)
55 (55	%	7	=	6)
47 (47	%	7	=	5)

ith probe:	(h(key) + i2) % TableSize

0
1
2
3
4
5
6

Quadratic	Probing:	Bad	News,	Good	News

• Bad	news:	
• Quadratic	probing	can	cycle	through	the	same	full	indices,	never	terminating	
despite	table	not	being	full

• Good	news:	
• If	TableSize is	prime and	l <	½,	then	quadratic	probing	will	find	an	empty	
slot	in	at	most	TableSize/2 probes
• So:	If	you	keep	l <	½	and	TableSize is	prime,	no	need	to	detect	cycles

• Proof	is	posted	online	next	to	lecture	slides
• Also,	slightly	less	detailed	proof	in	textbook
• Key	fact:	For	prime	T and	0 < i,j < T/2 where	i ¹ j,

(k + i2) % T ¹ (k + j2) % T (i.e.	no	index	repeat)

Clustering	Part	2

• Quadratic	probing	does	not	suffer	from	primary	clustering:							
no	problem	with	keys	initially	hashing	to	the	same	neighborhood

• But	it’s	no	help	if	keys	initially	hash	to	the	same	index:

This	is	called

• Can	avoid	secondary	clustering

Open	Addressing:	Double	Hashing

Idea:	
• Given	two	good	hash	functions	h and	g,	it	is	very	unlikely that	for	some	
key,		h(key) == g(key)

• So	make	the	probe	function	f(i) = i*g(key)

Probe	sequence:
• 0th probe:		h(key) % TableSize
• 1st probe:		(h(key) + g(key)) % TableSize
• 2nd probe:	
• 3rd probe:
• …
• ith probe:	(h(key) + i*g(key)) % TableSize

Double	Hashing	Analysis

• Intuition:	Because	each	probe	is	“jumping”	by	g(key) each	time,	we	
“leave	the	neighborhood”	and “go	different	places	from	other	initial	
collisions”

• Requirements	for	second	hash	function:

• Example	of	double	hash	function	pair	that	works:
• h(key) = key % p
• g(key) = q – (key % q)
• 2 < q < p
• p and	q are	prime

More	Double	Hashing	Facts

• Assume	“uniform	hashing”	
• Means	probability	of	g(key1) % p == g(key2) % p is	1/p

• Non-trivial	facts	we	won’t	prove:
Average	#	of	probes	given	l (in	the	limit	as	TableSize→¥)

• Unsuccessful	search	(intuitive):

• Successful	search	(less	intuitive):

• Bottom	line:	unsuccessful	bad	(but	not	as	bad	as	linear	probing),	but	
successful	is	not	nearly	as	bad

1
1 l-

1 1log
1el l
æ ö
ç ÷-è ø

Charts

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0.00 0.20 0.40 0.60 0.80 1.00

Av
er
ag
e	
#	
of
	P
ro
be

s

Load	Factor

Uniform	Hashing

uniform	
hashing	
found

uniform	
hashing	not	
found

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00

0.00 0.20 0.40 0.60 0.80 1.00

Av
er
ag
e	
#	
of
	P
ro
be

s

Load	Factor

Uniform	Hashing

uniform	hashing	
found

uniform	hashing	
not	found

0.00
2.00
4.00
6.00
8.00
10.00
12.00
14.00
16.00
18.00
20.00

0.00 0.20 0.40 0.60 0.80 1.00

Av
er
ag
e	
#	
of
	P
ro
be

s

Load	Factor

Linear	Probing

linear	probing	
found

linear	probing	
not	found

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

0.00 0.20 0.40 0.60 0.80 1.00

Av
er
ag
e	
#	
of
	P
ro
be

s

Load	Factor

Linear	Probing

linear	probing	
found

linear	probing	
not	found

Rehashing

Rehashing

• What	do	we	do	if	the	table	gets	too	full?

• How	do	we	copy	over	elements?

Rehashing

• What’s	“too	full”	in	Separate	Chaining?

• “Too	full”	for	Open	Addressing	/	Probing

Rehashing

• How	big	do	we	want	to	make	the	new	table?

• Can	keep	a	list	of	prime	numbers	in	your	code,	since	you	likely	won't	
grow	more	than	20-30	times	(2^30	=	1,073,741,824)

Wrapping	up	Hash	Tables

• A	hash	table	is	a	data-structure	for

• Some	example	uses	of	hash	tables:

Another	Data-Structure	for	Dictionaries?

Dictionary	meaning:
• Set	of	(key,	value)	pairs
• Can	compare	keys

Dictionary	operations:
• insert (key,	value)
• delete (key)
• find (key)

Trees!

Trees

Are	like	linked-lists,	but	can	have	more	than	one	“next”

Tree	terms
A

E

B

D F

C

G

IH

LJ MK N

Tree	T
Root	(tree)
Leaves	(tree)

Children	(node)
Parent	(node)
Siblings	(node)
Ancestors	(node)
Descendents (node)
Subtree	(node)

Tree	terms
A

E

B

D F

C

G

IH

LJ MK N

Tree	T

Depth	(node)

Height	(tree)

Degree	(node)	

Branching	factor	(tree)

Practice	with	Height	and	Depth

A

E

B

D F

C

G

IH

A A

B

Kinds	of	Trees
Certain	terms	define	trees	with	specific	structure

• Binary	tree:		Each	node	has	at	most
• n-ary tree:	Each	node	has	at	most
• Perfect	tree:	Each	row
• Complete	tree:		Each	row	completely	full	except

What	is	the	height	of	a	perfect	binary	tree	with	n	nodes?		
A	complete	14-ary tree?

More	Tree	Terms

• There	are	many	kinds	of	trees

• There	are	many	kinds	of	binary	trees

• A	tree	can	be	balanced	or	not
• A	balanced	tree	with	n nodes	has	a	height	of
• Different	kinds	of	trees	use	different	“balance	conditions”	to	achieve	this

26

(Bonus	Material)	Cool	Uses	&	Kinds	of	Trees!

Binary	Search	Tree - dictionaries	and	
more	
Syntax	Tree - Constructed	by	
compilers	and	(implicitly)	calculators	
to	parse	expression
Binary	Space	Partition - Used	in	
almost	every	3D	video	game	to	
determine	what	objects	need	to	be	
rendered.
Binary	Tries - Used	in	almost	every	
high-bandwidth	router	for	storing	
router-tables.

+

*

2 4

5

For now, focusing on generic and binary search
trees (don't worry about the other ones listed
here -- I just think they're cool and want to share!)

(Bonus	Material)	Cool	Uses	&	Kinds	of	Trees!

Game	Tree - Used	in	computer	chess	
and	other	game	AIs

GGM	Trees - Used	in	cryptographic	
applications	to	generate	a	tree	of	
pseudo-random	numbers.

Vantage-Point	Trees - Used	in	
bioinformatics	to	store	huge	
databases	of	genomic	data	records

…	and	many	more	kinds	and	uses	of	
trees!

For now, focusing on generic and binary search
trees (don't worry about the other ones listed
here -- I just think they're cool and want to share!)

Binary	Trees
• Binary	tree:		Each	node	has	at	most	2	children	(branching	factor	2)

• Binary	tree	is

• Representation:

• For	a	dictionary,	data	will	include	a	key	and	a	value

A

B

D E

C

F

HG

JI

Binary	Tree	Representation
A

right	
subtree

left
subtree

B
right	
subtree

left
subtree

C
right	
subtree

left
subtree

D
right	
subtree

left
subtree

E
right	
subtree

left
subtree

F
right	
subtree

left
subtree

A

B

D E

C

F

Practice	time!	What	does	the	following	method	do?

int mystery(Node node){
if (node == null),

return -1;
return 1 + max(mystery(node.left),

mystery(node.right);
}

A. It	calculates	the	number	of	nodes	in	the	tree.

B. It	calculates	the	depth	of	the	nodes.

C. It	calculates	the	height	of	the	tree.

D. It	calculates	the	number	of	leaves	in	the	tree.

Practice	time!	What	does	the	following	method	do?

int mystery(Node node){
if (node == null),

return -1;
return 1 + max(mystery(node.left),

mystery(node.right);
}

A. It	calculates	the	number	of	nodes	in	the	tree.

B. It	calculates	the	depth	of	the	nodes.

C. It	calculates	the	height	of	the	tree.

D. It	calculates	the	number	of	leaves	in	the	tree.

