
Instructor:	Lilian	de	Greef
Quarter:	Summer	2017

CSE	373:	Data	Structures	and	Algorithms
Lecture	7:	Hash	Table	Collisions

Today

• Announcements
• Hash	Table	Collisions
• Collision	Resolution	Schemes
• Separate	Chaining
• Open	Addressing	/	Probing

• Linear	Probing
• Quadratic	Probing
• Double	Hashing

• Rehashing

Announcements
• Reminder:	homework	2	due	tomorrow
• Homework	3:	Hash	Tables
• Will	be	out	tomorrow	night
• Pair-programming	opportunity!	(work	with	a	partner)
• Ideas	for	finding	partner:	before/after	class,	section,	Piazza

• Pair-programming:	write	code	together
• 2	people,	1	keyboard
• One	is	the	“navigator,”	the	other	the	“driver”
• Regularly	switch	off	to	spend	equal	time	in	both	roles
• Side	note:	our	brains	tend	to	edit	out	when	we	make	typos
• Need	to	be	in	same	physical	space	for	entire	assignment,	so	partner	and	plan	
accordingly!

Review:	Hash	Tables	&	Collisions

Hash	Tables:	Review

• A	data-structure	for	the	dictionary	ADT
• Average	case	O(1)	find,	insert,	and	delete

(when	under	some	often-reasonable	assumptions)
• An	array	storing	(key,	value)	pairs
• Use	hash	value	and	table	size	to	calculate	
array	index
• Hash	value	calculated	from	key	using	
hash	function

find,	insert,	or	delete
(key,	value)

apply	hash	function
h(key)	=	hash	value

index	=	hash	value	%	
table	size

array[index]	=	(key,	value)

if	collision,	apply	
collision	resolution

Hash	Table	Collisions:	Review

• Collision:

• We	try	to	avoid them	by

• Unfortunately,	collisions	are	unavoidable	in	practice
• Number	of	possible	keys	>>	table	size
• No	perfect	hash	function	&	table-index	combo

Collision	Resolution	Schemes:	your	ideas

Collision	Resolution	Schemes:	your	ideas

Separate	Chaining
One	of	several	collision	resolution	schemes

Separate	Chaining

All	keys	that	map	to	the	same	
table	location	(aka	“bucket”)	
are	kept	in	a	list	(“chain”).

Example:	
insert	10,	22,	107,	12,	42	
and	TableSize =	10
(for	illustrative	purposes,	
we’re	inserting	hash	values)

0
1
2
3
4
5
6
7
8
9

Separate	Chaining:	Worst-Case

What’s	the	worst-case	scenario	for	find?

What’s	the	worst-case	running	time	for	find?

But	only	with	really	bad	luck	or	really	bad	hash	function

Separate	Chaining:	Further	Analysis

• How	can	find become	slow	when	we	have	
a	good	hash	function?

• How	can	we	reduce	its	likelihood?

Rigorous	Analysis:	Load	Factor

Definition: The	load	factor	(l) of	a	hash	table	with	N elements	is

𝜆 = 𝑁
𝑡𝑎𝑏𝑙𝑒	𝑠𝑖𝑧𝑒

Under	separate	chaining,	the	average	number	of	elements	per	bucket	is		_____

For	a	random find,	on	average
• an	unsuccessful	find compares	against				_______					items

• a	successful	find compares	against			_______				items

Rigorous	Analysis:	Load	Factor

Definition: The	load	factor	(l) of	a	hash	table	with	N elements	is

𝜆 = 𝑁
𝑡𝑎𝑏𝑙𝑒	𝑠𝑖𝑧𝑒

To	choose	a	good	load	factor,	what	are	our	goals?

So	for	separate	chaining,	a	good	load	factor	is

Open	Addressing	/	Probing
Another	family	of	collision	resolution	schemes

Idea:	use	empty	space	in	the	table

• If	h(key) is	already	full,	
• try	(h(key) + 1) % TableSize.		If	full,
• try	(h(key) + 2) % TableSize.		If	full,
• try	(h(key) + 3) % TableSize.		If	full…

• Example:	insert	38,	19,	8,	109,	10

0
1
2
3
4
5
6
7
8
9

Open	Addressing	Terminology

Trying	the	next	spot	is	called																									(also	called)

• We	just	did	
ith probe	was	(h(key) + i) % TableSize

• In	general	have	some																																													f and	use											
(h(key) + f(i)) % TableSize

Dictionary	Operations	with	Open	Addressing
insert finds	an	open	table	position	using	a	probe	function

What	about	find?

What	about	delete?

• Note:	delete with	separate	chaining	is	plain-old	list-remove

Practice:
The	keys	12,	18,	13,	2,	3,	23,	5	and	15	are	inserted	into	an	initially	empty	hash	table	
of	length	10	using	open	addressing	with	hash	function	h(k)	=	k	mod	10	and	linear	
probing.	What	is	the	resultant	hash	table?

0
1
2 2
3 23
4
5 15
6
7
8 18
9

0
1
2 12
3 13
4
5 5
6
7
8 18
9

0
1
2 12
3 13
4 2
5 3
6 23
7 5
8 18
9 15

0
1
2 12, 2
3 13, 3, 23
4
5 5, 15
6
7
8 18
9

(A) (B) (C) (D)

Open	Addressing:	Linear	Probing

• Quick	to	compute!	J
• But	mostly	a	bad	idea.	Why?

(Primary)	Clustering

Linear	probing	tends	to	produce	
clusters,	which	lead	to	long	probing	
sequences

• Called

• Saw this	starting	in	our	example

[R.	Sedgewick]

Analysis	of	Linear	Probing

• For	any	l <	1,	linear	probing	will	find	an	empty	slot
• It	is	“safe”	in	this	sense:	no	infinite	loop	unless	table	is	full

• Non-trivial	facts	we	won’t	prove:
Average	#	of	probes	given	l (in	the	limit	as	TableSize→¥)

• Unsuccessful	search:

• Successful	search:		

• This	is	pretty	bad:	need	to	leave	sufficient	empty	space	in	the	table	to	get	decent	
performance	(see	chart)

() ÷
÷
ø

ö
çç
è

æ
-

+ 21
11

2
1

l

()÷÷ø
ö

çç
è

æ
-

+
l1
11

2
1

Analysis:	Linear	Probing
• Linear-probing	performance	degrades	rapidly	as	table	gets	full

(Formula	assumes	“large	table”	but	point	remains)

• By	comparison,	chaining	performance	is	linear	in	l and	has	no	trouble	with	l>1

0.00
2.00
4.00
6.00
8.00
10.00
12.00
14.00
16.00
18.00
20.00

0.00 0.20 0.40 0.60 0.80 1.00

Av
er
ag
e	
#	
of
	P
ro
be

s

Load	Factor

Linear	Probing

linear	probing	
found

linear	probing	
not	found

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

0.00 0.20 0.40 0.60 0.80 1.00

Av
er
ag
e	
#	
of
	P
ro
be

s
Load	Factor

Linear	Probing

linear	probing	
found

linear	probing	
not	found

Any	ideas	for	alternatives?

Open	Addressing:	Quadratic	Probing

• We	can	avoid	primary	clustering	by	changing	the	probe	function
(h(key) + f(i)) % TableSize

• A	common	technique	is	quadratic	probing:					f(i) = i2
• So	probe	sequence	is:
• 0th probe:		h(key) % TableSize
• 1st probe:
• 2nd probe:
• 3rd probe:
• …
• ith probe:	(h(key) + i2) % TableSize

• Intuition:	Probes	quickly	“leave	the	neighborhood”

Quadratic	Probing	Example	#1

TableSize =	10
Insert:	

89
18
49
58
79

ith probe:	(h(key) + i2) % TableSize

0
1
2
3
4
5
6
7
8
9

Quadratic	Probing	Example	#2

TableSize =	7
Insert:

76	 (76	%	7	=	6)
40 (40	%	7	=	5)
48 (48	%	7	=	6)
5 (5	%	7	=	5)
55 (55	%	7	=	6)
47 (47	%	7	=	5)

ith probe:	(h(key) + i2) % TableSize

0
1
2
3
4
5
6

Quadratic	Probing:	Bad	News,	Good	News

• Bad	news:	
• Quadratic	probing	can	cycle	through	the	same	full	indices,	never	terminating	
despite	table	not	being	full

• Good	news:	
• If	TableSize is	prime and	l <	½,	then	quadratic	probing	will	find	an	empty	
slot	in	at	most	TableSize/2 probes
• So:	If	you	keep	l <	½	and	TableSize is	prime,	no	need	to	detect	cycles

• Proof	is	posted	online	next	to	lecture	slides
• Also,	slightly	less	detailed	proof	in	textbook
• Key	fact:	For	prime	T and	0 < i,j < T/2 where	i ¹ j,
(k + i2) % T ¹ (k + j2) % T (i.e.,	no	index	repeat)

Clustering	Part	2

• Quadratic	probing	does	not	suffer	from	primary	clustering:							
no	problem	with	keys	initially	hashing	to	the	same	neighborhood

• But	it’s	no	help	if	keys	initially	hash	to	the	same	index:

This	is	called

• Can	avoid	secondary	clustering

Open	Addressing:	Double	Hashing

Idea:	
• Given	two	good	hash	functions	h and	g,	it	is	very	unlikely that	for	some	
key,		h(key) == g(key)

• So	make	the	probe	function	f(i) = i*g(key)

Probe	sequence:
• 0th probe:		h(key) % TableSize
• 1st probe:		(h(key) + g(key)) % TableSize
• 2nd probe:	
• 3rd probe:
• …
• ith probe:	(h(key) + i*g(key)) % TableSize

Double	Hashing	Analysis

• Intuition:	Because	each	probe	is	“jumping”	by	g(key) each	time,	we	
“leave	the	neighborhood”	and “go	different	places	from	other	initial	
collisions”

• Requirements	for	second	hash	function:

• Example	of	double	hash	function	pair	that	works:
• h(key) = key % p
• g(key) = q – (key % q)
• 2 < q < p
• p and	q are	prime

More	Double	Hashing	Facts

• Assume	“uniform	hashing”	
• Means	probability	of	g(key1) % p == g(key2) % p is	1/p

• Non-trivial	facts	we	won’t	prove:
Average	#	of	probes	given	l (in	the	limit	as	TableSize→¥)

• Unsuccessful	search	(intuitive):

• Successful	search	(less	intuitive):

• Bottom	line:	unsuccessful	bad	(but	not	as	bad	as	linear	probing),	but	
successful	is	not	nearly	as	bad

1
1 l-

1 1log
1el l
æ ö
ç ÷-è ø

Charts

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0.00 0.20 0.40 0.60 0.80 1.00

Av
er
ag
e	
#	
of
	P
ro
be

s

Load	Factor

Uniform	Hashing

uniform	
hashing	
found

uniform	
hashing	not	
found

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00

0.00 0.20 0.40 0.60 0.80 1.00

Av
er
ag
e	
#	
of
	P
ro
be

s

Load	Factor

Uniform	Hashing

uniform	hashing	
found

uniform	hashing	
not	found

0.00
2.00
4.00
6.00
8.00
10.00
12.00
14.00
16.00
18.00
20.00

0.00 0.20 0.40 0.60 0.80 1.00

Av
er
ag
e	
#	
of
	P
ro
be

s

Load	Factor

Linear	Probing

linear	probing	
found

linear	probing	
not	found

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

0.00 0.20 0.40 0.60 0.80 1.00

Av
er
ag
e	
#	
of
	P
ro
be

s

Load	Factor

Linear	Probing

linear	probing	
found

linear	probing	
not	found

Rehashing

Rehashing

• What	do	we	do	if	the	table	gets	too	full?

• How	do	we	copy	over	elements?

Rehashing

• What’s	“too	full”	in	Separate	Chaining?

• “Too	full”	for	Open	Addressing	/	Probing

Rehashing

• How	big	do	we	want	to	make	the	new	table?

• Can	keep	a	list	of	prime	numbers	in	your	code,	since	you	likely	won't	
grow	more	than	20-30	times	(2^30	=	1,073,741,824)

