CSE 373: Data Structures and Algorithms

Lecture 7: Hash Table Collisions

Instructor: Lilian de Greef
Quarter: Summer 2017

Today

* Announcements
 Hash Table Collisions

* Collision Resolution Schemes
* Separate Chaining
* Open Addressing / Probing

* Linear Probing
* Quadratic Probing
* Double Hashing

* Rehashing

Announcements

e Reminder: homework 2 due tomorrow

* Homework 3: Hash Tables
* Will be out tomorrow night
 Pair-programming opportunity! (work with a partner)
* Ideas for finding partner: before/after class, section, Piazza

* Pair-programming: write code together
» 2 people, 1 keyboard
* One is the “navigator,” the other the “driver”
Regularly switch off to spend equal time in both roles
Side note: our brains tend to edit out when we make typos

Need to be in same physical space for entire assignment, so partner and plan
accordingly!

Review: Hash Tables & Collisions

Hash Tables: Review

* A data-structure for the dictionary ADT

* Average case O(1) find, insert, and delete
(when under some often-reasonable assumptions)

* An array storing (key, value) pairs

e Use hash value and table size to calculate
array index

* Hash value calculated from key using
hash function

find, insert,ordelete
(key, value)

U

apply hash function
h(key) = hash value

U

index = hash value %
table size

U

if collision, apply
collision resolution

U

array[index] = (key, value)

Hash Table Collisions: Review

e Collision:

* We try to avoid them by

* Unfortunately, collisions are unavoidable in practice

* Number of possible keys >> table size
* No perfect hash function & table-index combo

Collision Resolution Schemes: your ideas

Collision Resolution Schemes: your ideas

Separate Chaining

One of several collision resolution schemes

Separate Chaining

All keys that map to the same
table location (aka “bucket”)
are kept in a list (“chain”).

Example:
insert 10, 22, 107, 12, 42
and TableSize =10

(for illustrative purposes,
we’re inserting hash values)

O 0 13 N »n B~ W N — O

Separate Chaining: Worst-Case

What’s the worst-case scenario for find?

What'’s the worst-case running time for £ind?

But only with really bad luck or really bad hash function

Separate Chaining: Further Analysis

e How can £ind become slow when we have
a good hash function?

e How can we reduce its likelihood?

Rigorous Analysis: Load Factor

Definition: The load factor (A) of a hash table with N elements is

N
"~ table size

Under separate chaining, the average number of elements per bucket is

For a random f£ind, on average
* an unsuccessful £ind compares against items

* a successful £ind compares against items

Rigorous Analysis: Load Factor

Definition: The load factor (A) of a hash table with N elements is

N

table size

To choose a good load factor, what are our goals?

So for separate chaining, a good load factor is

Open Addressing / Probing

Another family of collision resolution schemes

ldea: use empty space in the table

e If h (key) is already full,
* try (h(key) + 1) % TableSize. Iffull,
* try (h(key) + 2) % TableSize. Iffull,
* try (h(key) + 3) % TableSize. Iffull.

* Example: insert 38, 19, 8, 109, 10

O 0 13 N »n B~ W N — O

Open Addressing Terminology

Trying the next spot is called (also called

* We just did
ith probe was (h(key) + 1) % TableSize

* In general have some f and use
(h(key) + £(1)) % TableSize

Dictionary Operations with Open Addressing

insert finds an open table position using a probe function

What about £ind?

What about delete?

* Note: delete with separate chaining is plain-old list-remove

Practice:

The keys 12, 18, 13, 2, 3, 23, 5 and 15 are inserted into an initially empty hash table
of length 10 using open addressing with hash function h(k) = k mod 10 and linear
probing. What is the resultant hash table?

0 0 0 0

1 1 1 1

2 2 2 12 2 12 2 12,2
3 23 3 13 3 13 3 | 13,3,23
4 4 4 2 4

5 15 5 5 5 3 5 5,15
6 6 6 23 6

7 7 7 5 7

8 18 8 18 8 18 8 18

9 9 9 15 9

(A) (B) (C) (D)

Open Addressing: Linear Probing

* Quick to compute! ©
* But mostly a bad idea. Why?

Lo o Lo

(Primary) Clustering

Linear probing tends to produce

clusters, which lead to long probing

sequences

e Called

e Saw this starting in our example

L
i I!JL'JL_H!JL‘JLJ
LJLJL‘LlL!Ji!JLJLJL'_lLJLJL_lLJLJLJL_I
W L_JLJLJL_JLJL_JLJLJLJLJ

e LIS

Ludin uuuuuuuuuuu

¥
.muuumg@muuuuu

L
mmmmu&@muuummuu "
ool
ummméuuuuumwuu

umwwmw@ummuu

LI

[
uuuuéuwmwuumuu

L e
L ieeee

LI
. L!H!’JL'—MjLJ
e ® Lﬁﬁﬁtﬂmmmmu

A
. Lﬂlﬂ@umm
e [R. Sedgewick]

L
L

Analysis of Linear Probing

* Forany A< 1, linear probing will find an empty slot
* Itis “safe” in this sense: no infinite loop unless table is full

* Non-trivial facts we won’t prove:
Average # of probes given A (in the limit as TableSize)

* Unsuccessful search: l 1+ ! 5
20 (1-2)

» Successful search: 1 1+ 1
20 (1-24)

* This is pretty bad: need to leave sufficient empty space in the table to get decent
performance (see chart)

Analysis: Linear Probing

* Linear-probing performance degrades rapidly as table gets full
(Formula assumes “large table” but point remains)

Linear Probing Linear Probing

« 20.00 @ 350.00
[} (]
o 18.00 I 2 300,00
© 16.00 / e
e_— 14.00 linear probing e_' 250.00 linear probing
S 12.00 / found - 200.00 found
ﬁ 10.00)) i
0 3800 / linear probing ap 150.00 linear probing
c / not found o l not found
g 6.00 / g 100.00

4.00 /
< 500 — < 5000 / .

0.00 0.00

0.00 0.20 0.40 0.60 0.80 1.00 0.00 0.20 0.40 0.60 0.80 1.00

Load Factor Load Factor

* By comparison, chaining performance is linear in A and has no trouble with A>1

Any ideas for alternatives?

Open Addressing: Quadratic Probing

* We can avoid primary clustering by changing the probe function

(h(key) + f£(i)) % TableSize
* A common technique is quadratic probing: £ (i) = i?
* So probe sequence is:
* 0% probe: h (key) % TableSize
* 15t probe:
2" probe:
3" probe:

it probe: (h (key) + 1?) % TableSize

* Intuition: Probes quickly “leave the neighborhood”

Quadratic Probing Example #1

0

1 TableSize = 10
) Insert:

3 89

4 18

5 49

6 58

. 79

8

9

it probe: (h (key) + 12?) % TableSize

Quadratic Probing Example #2

0 TableSize = 7

1 Insert:

2 76 (76 % 7 = 6)

3 40 (40 % 7 = 5)

4 48 (48 % 7 = 6)

5 5 (5%7=5)

6 55 (55% 7 =6)
47 (47 % 7 = 5)

ith probe: (h(key) + 12) % TableSize

Quadratic Probing: Bad News, Good News

 Bad news:

* Quadratic probing can cycle through the same full indices, never terminating
despite table not being full

* Good news:

* If TableSize is prime and A < %, then quadratic probing will find an empty
slotin at most TableSize/2 probes

* So: If you keep A <% and TableSize is prime, no need to detect cycles

* Proof is posted online next to lecture slides
 Also, slightly less detailed proof in textbook
* Keyfact: ForprimeTand 0 < 1i,j < T/2wherei # 7,

(k + 1%) $ T # (k + j%) % T (i.e., noindex repeat)

Clustering Part 2

* Quadratic probing does not suffer from primary clustering:
no problem with keys initially hashing to the same neighborhood

e But it’s no help if keys initially hash to the same index:

This is called

e Can avoid secondary clustering

Open Addressing: Double Hashing

Idea:

* Given two good hash functions h and g, it is very unlikely that for some
key, h (key) == g(key)

* So make the probe function £ (i) = i*g(key)

Probe sequence:
* 0% probe: h (key) % TableSize
* 1stprobe: (h(key) + g(key)) % TableSize
e 2" probe:
* 3rd probe:

Double Hashing Analysis

* Intuition: Because each probe is “jumping” by g (key) each time, we

“leave the neighborhood” and “go different places from other initial
collisions”

* Requirements for second hash function:

* Example of double hash function pair that works:
* h(key) = key 5 p
* g(key) = g - (key % Q)
e 2 < g<p
* pand gare prime

More Double Hashing Facts

e Assume “uniform hashing”
e Means probability of g (keyl) % p == g(key2) % p isl/p

* Non-trivial facts we won’t prove:
Average # of probes given A (in the limit as TableSize - w)

* Unsuccessful search (intuitive): -

1

* Successful search (less intuitive): %Ioge(nj

e Bottom line: unsuccessful bad (but not as bad as linear probing), but
successful is not nearly as bad

Charts

Uniform Hashing

» 5.00
8 450 7
g 4.00 /
o« 350 / uniform hashing
O 3.00 found
® 550 /
[/
Q0 3 00
E /
@ 1.50 / uniform hashing
2 1.00 not found
0.50
0.00
0.00 0.20 0.40 0.60 0.80 1.00
Load Factor
Uniform Hashing
« 120.00
2
© 100.00
P =
o .
@ 80.00 ——uniform
=°t hashing
o ©60.00 found
[-T]
© 4000 .
[J] / uniform
2 20.00 hashing not
_’./ found
0.00
0.00 0.20 0.40 0.60 0.80 1.00

Load Factor

Average # of Probes

Average # of Probes

20.00
18.00
16.00
14.00
12.00
10.00
8.00
6.00
4.00
2.00
0.00
0.

350.00
300.00
250.00
200.00
150.00
100.00

50.00

0.00

Linear Probing

/ ———linear probing
// found
/ linear probing
/ not found
00 0.20 0.40 0.60 0.80 1.00
Load Factor
Linear Probing
———linear probing
found
linear probing
/ not found
0.00 0.20 0.40 0.60 0.80 1.00

Load Factor

Rehashing

Rehashing

* What do we do if the table gets too full?

 How do we copy over elements?

Rehashing

* What'’s “too full” in Separate Chaining?

* “Too full” for Open Addressing / Probing

Rehashing

* How big do we want to make the new table?

* Can keep a list of prime numbers in your code, since you likely won't
grow more than 20-30 times (2730 = 1,073,741,824)

