CSE 373: Data Structures and Algorithms

Lecture 7: Hash Table Collisions

Instructor: Lilian de Greef Quarter: Summer 2017

Today

- Announcements
- Hash Table Collisions
- Collision Resolution Schemes
 - Separate Chaining
 - Open Addressing / Probing
 - Linear Probing
 - Quadratic Probing
 - Double Hashing
- Rehashing

Announcements

- Reminder: homework 2 due tomorrow
- Homework 3: Hash Tables
 - Will be out tomorrow night
 - Pair-programming opportunity! (work with a partner)
 - Ideas for finding partner: before/after class, section, Piazza
- Pair-programming: write code together
 - 2 people, 1 keyboard
 - One is the "navigator," the other the "driver"
 - Regularly switch off to spend equal time in both roles
 - Side note: our brains tend to edit out when we make typos
 - Need to be in same physical space for entire assignment, so partner and plan accordingly!

Review: Hash Tables & Collisions

Hash Tables: Review

- A data-structure for the dictionary ADT
- Average case O(1) find, insert, and delete (when under some often-reasonable assumptions)
- An array storing (key, value) pairs
- Use hash value and table size to calculate array index
- Hash value calculated from key using hash function

find, insert, or delete
 (key, value)

apply hash function h(key) = hash value

index = hash value % table size

if collision, apply collision resolution

array[index] = (key, value)

Hash Table Collisions: Review

• Collision:

- We try to avoid them by
- Unfortunately, collisions are unavoidable in practice
 - Number of possible keys >> table size
 - No perfect hash function & table-index combo

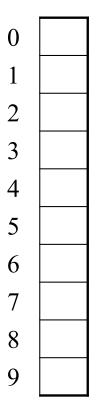
Collision Resolution Schemes: your ideas

Collision Resolution Schemes: your ideas

Separate Chaining

One of several collision resolution schemes

Separate Chaining



All keys that map to the same table location (aka "bucket") are kept in a list ("chain").

Example:

insert 10, 22, 107, 12, 42

and **TableSize** = 10

(for illustrative purposes, we're inserting hash values)

Separate Chaining: Worst-Case

What's the worst-case scenario for find?

What's the worst-case running time for find?

But only with really bad luck or really bad hash function

Separate Chaining: Further Analysis

• How can find become slow when we have a good hash function?

• How can we reduce its likelihood?

Rigorous Analysis: Load Factor

Definition: The **load factor** (λ) of a hash table with N elements is

$$\lambda = \frac{N}{table \ size}$$

Under separate chaining, the average number of elements per bucket is ______

For a random find, on average

- an unsuccessful find compares against _____ items
- a successful find compares against _____ items

Rigorous Analysis: Load Factor

Definition: The **load factor** (λ) of a hash table with N elements is

$$\lambda = \frac{N}{table \ size}$$

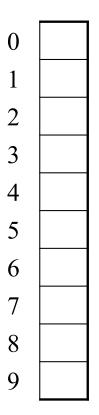
To choose a good load factor, what are our goals?

So for separate chaining, a good load factor is

Open Addressing / Probing

Another family of collision resolution schemes

Idea: use empty space in the table



```
• If h (key) is already full,
```

```
• try (h(key) + 1) % TableSize. If full,
```

- try (h(key) + 2) % TableSize. If full,
- try (h(key) + 3) % TableSize. If full...

• Example: insert 38, 19, 8, 109, 10

Open Addressing Terminology

Trying the next spot is called

(also called

- We just did ith probe was (h(key) + i) % TableSize
- In general have some f and use (h (key) + f (i)) % TableSize

Dictionary Operations with Open Addressing

insert finds an open table position using a probe function

What about find?

What about delete?

• Note: delete with separate chaining is plain-old list-remove

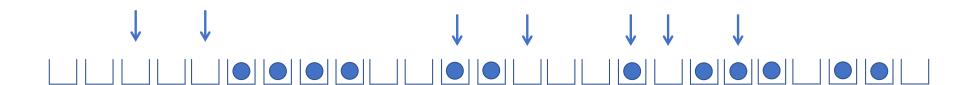
Practice:

The keys 12, 18, 13, 2, 3, 23, 5 and 15 are inserted into an initially empty hash table of length 10 using open addressing with hash function $h(k) = k \mod 10$ and linear probing. What is the resultant hash table?

0		0		0		0	
1		1		1		1	
2	2	2	12	2	12	2	12, 2
3	23	3	13	3	13	3	13, 3, 23
4		4		4	2	4	
5	15	5	5	5	3	5	5, 15
6		6		6	23	6	
7		7		7	5	7	
8	18	8	18	8	18	8	18
9		9		9	15	9	
	(A)	•	(B)	•	(C)		(D)

Open Addressing: Linear Probing

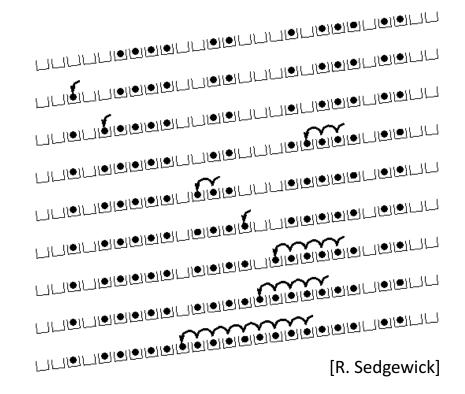
- Quick to compute! ©
- But mostly a bad idea. Why?



(Primary) Clustering

Linear probing tends to produce clusters, which lead to long probing sequences

- Called
- Saw this starting in our example

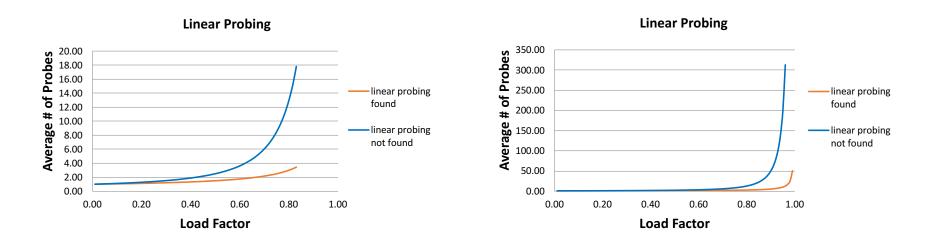


Analysis of Linear Probing

- For any $\lambda < 1$, linear probing will find an empty slot
 - It is "safe" in this sense: no infinite loop unless table is full
- Non-trivial facts we won't prove: Average # of probes given λ (in the limit as **TableSize** $\rightarrow \infty$)
 - Unsuccessful search: $\frac{1}{2} \left(1 + \frac{1}{(1-\lambda)^2} \right)$
 - Successful search: $\frac{1}{2} \left(1 + \frac{1}{(1 \lambda)} \right)$
- This is pretty bad: need to leave sufficient empty space in the table to get decent performance (see chart)

Analysis: Linear Probing

• Linear-probing performance degrades rapidly as table gets full (Formula assumes "large table" but point remains)



• By comparison, chaining performance is linear in λ and has no trouble with $\lambda > 1$

Any ideas for alternatives?

Open Addressing: Quadratic Probing

We can avoid primary clustering by changing the probe function

```
(h(key) + f(i)) % TableSize
```

- A common technique is quadratic probing: $f(i) = i^2$
 - So probe sequence is:
 - Oth probe: h(key) % TableSize
 - 1st probe:
 - 2nd probe:
 - 3rd probe:
 - ...
 - ith probe: (h(key) + i²) % TableSize
- Intuition: Probes quickly "leave the neighborhood"

Quadratic Probing Example #1

ith probe: (h(key) + i²) % TableSize

Quadratic Probing Example #2

0	
1	
2	
3	
4	
5	
6	

ith probe: (h(key) + i²) % TableSize

Quadratic Probing: Bad News, Good News

Bad news:

 Quadratic probing can cycle through the same full indices, never terminating despite table not being full

Good news:

- If TableSize is prime and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in at most TableSize/2 probes
- So: If you keep $\lambda < \frac{1}{2}$ and TableSize is *prime*, no need to detect cycles
- Proof is posted online next to lecture slides
 - Also, slightly less detailed proof in textbook
 - Key fact: For prime \mathbb{T} and $0 < i, j < \mathbb{T}/2$ where $i \neq j$, $(k + i^2) % <math>\mathbb{T} \neq (k + j^2) % \mathbb{T}$ (i.e., no index repeat)

Clustering Part 2

Quadratic probing does not suffer from primary clustering:
no problem with keys initially hashing to the same neighborhood

But it's no help if keys initially hash to the same index:

This is called

Can avoid secondary clustering

Open Addressing: Double Hashing

Idea:

- Given two good hash functions h and g, it is very unlikely that for some key, h(key) == g(key)
- So make the probe function f(i) = i*g(key)

Probe sequence:

- Oth probe: h(key) % TableSize • 1st probe: (h(key) + g(key)) % TableSize • 2nd probe:
- 3rd probe:
- ...
- ith probe: (h(key) + i*g(key)) % TableSize

Double Hashing Analysis

- Intuition: Because each probe is "jumping" by g(key) each time, we "leave the neighborhood" and "go different places from other initial collisions"
- Requirements for second hash function:

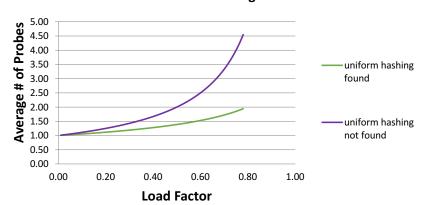
- Example of double hash function pair that works:
 - h(key) = key % p
 - g(key) = q (key % q)
 - 2 < q < p
 - p and q are prime

More Double Hashing Facts

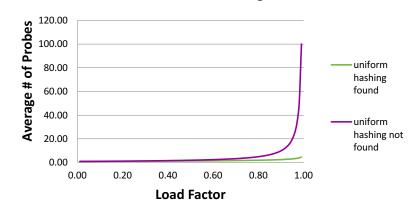
- Assume "uniform hashing"
 - Means probability of g (key1) % p == g (key2) % p is 1/p
- Non-trivial facts we won't prove: Average # of probes given λ (in the limit as TableSize $\rightarrow \infty$)
 - Unsuccessful search (intuitive): $\frac{1}{1-\lambda}$
 - Successful search (less intuitive): $\frac{1}{\lambda} \log_{e} \left(\frac{1}{1-\lambda} \right)$
- Bottom line: unsuccessful bad (but not as bad as linear probing), but successful is not nearly as bad

Charts

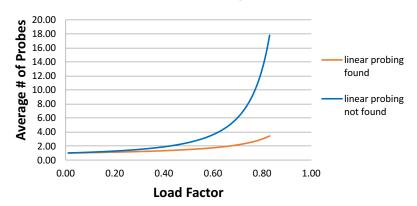
Uniform Hashing



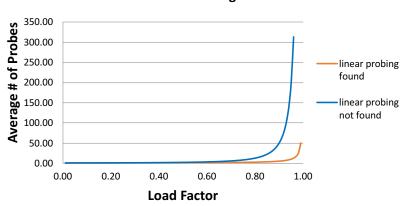
Uniform Hashing



Linear Probing



Linear Probing



• What do we do if the table gets too full?

• How do we copy over elements?

• What's "too full" in Separate Chaining?

• "Too full" for Open Addressing / Probing

• How big do we want to make the new table?

• Can keep a list of prime numbers in your code, since you likely won't grow more than 20-30 times (2^30 = 1,073,741,824)