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CSE	373:	Data	Structures	and	Algorithms
Lecture	7:	Hash	Table	Collisions



Today

• Announcements
• Hash	Table	Collisions
• Collision	Resolution	Schemes
• Separate	Chaining
• Open	Addressing	/	Probing

• Linear	Probing
• Quadratic	Probing
• Double	Hashing

• Rehashing



Announcements
• Reminder:	homework	2	due	tomorrow
• Homework	3:	Hash	Tables
• Will	be	out	tomorrow	night
• Pair-programming	opportunity!	(work	with	a	partner)
• Ideas	for	finding	partner:	before/after	class,	section,	Piazza

• Pair-programming:	write	code	together
• 2	people,	1	keyboard
• One	is	the	“navigator,”	the	other	the	“driver”
• Regularly	switch	off	to	spend	equal	time	in	both	roles
• Side	note:	our	brains	tend	to	edit	out	when	we	make	typos
• Need	to	be	in	same	physical	space	for	entire	assignment,	so	partner	and	plan	
accordingly!



Review:	Hash	Tables	&	Collisions



Hash	Tables:	Review

• A	data-structure	for	the	dictionary	ADT
• Average	case	O(1)	find,	insert,	and	delete

(when	under	some	often-reasonable	assumptions)
• An	array	storing	(key,	value)	pairs
• Use	hash	value	and	table	size	to	calculate	
array	index
• Hash	value	calculated	from	key	using	
hash	function

find,	insert,	or	delete
(key,	value)

apply	hash	function
h(key)	=	hash	value

index	=	hash	value	%	
table	size

array[index]	=	(key,	value)

if	collision,	apply	
collision	resolution



Hash	Table	Collisions:	Review

• Collision:

• We	try	to	avoid them	by

• Unfortunately,	collisions	are	unavoidable	in	practice
• Number	of	possible	keys	>>	table	size
• No	perfect	hash	function	&	table-index	combo



Collision	Resolution	Schemes:	your	ideas



Collision	Resolution	Schemes:	your	ideas



Separate	Chaining
One	of	several	collision	resolution	schemes



Separate	Chaining

All	keys	that	map	to	the	same	
table	location	(aka	“bucket”)	
are	kept	in	a	list	(“chain”).

Example:	
insert	10,	22,	107,	12,	42	
and	TableSize =	10
(for	illustrative	purposes,	
we’re	inserting	hash	values)
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Separate	Chaining:	Worst-Case

What’s	the	worst-case	scenario	for	find?

What’s	the	worst-case	running	time	for	find?

But	only	with	really	bad	luck	or	really	bad	hash	function



Separate	Chaining:	Further	Analysis

• How	can	find become	slow	when	we	have	
a	good	hash	function?

• How	can	we	reduce	its	likelihood?



Rigorous	Analysis:	Load	Factor

Definition: The	load	factor	(l) of	a	hash	table	with	N elements	is

𝜆 = 𝑁
𝑡𝑎𝑏𝑙𝑒	𝑠𝑖𝑧𝑒

Under	separate	chaining,	the	average	number	of	elements	per	bucket	is		_____

For	a	random find,	on	average
• an	unsuccessful	find compares	against				_______					items

• a	successful	find compares	against			_______				items



Rigorous	Analysis:	Load	Factor

Definition: The	load	factor	(l) of	a	hash	table	with	N elements	is

𝜆 = 𝑁
𝑡𝑎𝑏𝑙𝑒	𝑠𝑖𝑧𝑒

To	choose	a	good	load	factor,	what	are	our	goals?

So	for	separate	chaining,	a	good	load	factor	is



Open	Addressing	/	Probing
Another	family	of	collision	resolution	schemes



Idea:	use	empty	space	in	the	table

• If	h(key) is	already	full,	
• try	(h(key) + 1) % TableSize.		If	full,
• try	(h(key) + 2) % TableSize.		If	full,
• try	(h(key) + 3) % TableSize.		If	full…

• Example:	insert	38,	19,	8,	109,	10

0
1
2
3
4
5
6
7
8
9



Open	Addressing	Terminology

Trying	the	next	spot	is	called																									(also	called	 )

• We	just	did	
ith probe	was	(h(key) + i) % TableSize

• In	general	have	some																																													f and	use											
(h(key) + f(i)) % TableSize



Dictionary	Operations	with	Open	Addressing
insert finds	an	open	table	position	using	a	probe	function

What	about	find?

What	about	delete?

• Note:	delete with	separate	chaining	is	plain-old	list-remove



Practice:
The	keys	12,	18,	13,	2,	3,	23,	5	and	15	are	inserted	into	an	initially	empty	hash	table	
of	length	10	using	open	addressing	with	hash	function	h(k)	=	k	mod	10	and	linear	
probing.	What	is	the	resultant	hash	table?

0
1
2 2
3 23
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5 15
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0
1
2 12
3 13
4
5 5
6
7
8 18
9

0
1
2 12
3 13
4 2
5 3
6 23
7 5
8 18
9 15

0
1
2 12, 2
3 13, 3, 23
4
5 5, 15
6
7
8 18
9

(A) (B) (C) (D)



Open	Addressing:	Linear	Probing

• Quick	to	compute!	J
• But	mostly	a	bad	idea.	Why?



(Primary)	Clustering

Linear	probing	tends	to	produce	
clusters,	which	lead	to	long	probing	
sequences

• Called

• Saw this	starting	in	our	example

[R.	Sedgewick]



Analysis	of	Linear	Probing

• For	any	l <	1,	linear	probing	will	find	an	empty	slot
• It	is	“safe”	in	this	sense:	no	infinite	loop	unless	table	is	full

• Non-trivial	facts	we	won’t	prove:
Average	#	of	probes	given	l (in	the	limit	as	TableSize→¥ )

• Unsuccessful	search:

• Successful	search:		

• This	is	pretty	bad:	need	to	leave	sufficient	empty	space	in	the	table	to	get	decent	
performance	(see	chart)
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Analysis:	Linear	Probing
• Linear-probing	performance	degrades	rapidly	as	table	gets	full

(Formula	assumes	“large	table”	but	point	remains)

• By	comparison,	chaining	performance	is	linear	in	l and	has	no	trouble	with	l>1
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Any	ideas	for	alternatives?



Open	Addressing:	Quadratic	Probing

• We	can	avoid	primary	clustering	by	changing	the	probe	function
(h(key) + f(i)) % TableSize

• A	common	technique	is	quadratic	probing:					f(i) = i2
• So	probe	sequence	is:
• 0th probe:		h(key) % TableSize
• 1st probe:
• 2nd probe:
• 3rd probe:
• …
• ith probe:	(h(key) + i2) % TableSize

• Intuition:	Probes	quickly	“leave	the	neighborhood”



Quadratic	Probing	Example	#1

TableSize =	10
Insert:	

89
18
49
58
79

ith probe:	(h(key) + i2) % TableSize
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Quadratic	Probing	Example	#2

TableSize =	7
Insert:

76	 (76	%	7	=	6)
40 (40	%	7	=	5)
48 (48	%	7	=	6)
5 (		5	%	7	=	5)
55 (55	%	7	=	6)
47 (47	%	7	=	5)

ith probe:	(h(key) + i2) % TableSize
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6



Quadratic	Probing:	Bad	News,	Good	News

• Bad	news:	
• Quadratic	probing	can	cycle	through	the	same	full	indices,	never	terminating	
despite	table	not	being	full

• Good	news:	
• If	TableSize is	prime and	l <	½,	then	quadratic	probing	will	find	an	empty	
slot	in	at	most	TableSize/2 probes
• So:	If	you	keep	l <	½	and	TableSize is	prime,	no	need	to	detect	cycles

• Proof	is	posted	online	next	to	lecture	slides
• Also,	slightly	less	detailed	proof	in	textbook
• Key	fact:	For	prime	T and	0 < i,j < T/2 where	i ¹ j,
(k + i2) % T ¹ (k + j2) % T (i.e.,	no	index	repeat)



Clustering	Part	2

• Quadratic	probing	does	not	suffer	from	primary	clustering:							
no	problem	with	keys	initially	hashing	to	the	same	neighborhood

• But	it’s	no	help	if	keys	initially	hash	to	the	same	index:

This	is	called

• Can	avoid	secondary	clustering



Open	Addressing:	Double	Hashing

Idea:	
• Given	two	good	hash	functions	h and	g,	it	is	very	unlikely that	for	some	
key,		h(key) == g(key)

• So	make	the	probe	function	f(i) = i*g(key)

Probe	sequence:
• 0th probe:		h(key) % TableSize
• 1st probe:		(h(key) + g(key))   % TableSize
• 2nd probe:	
• 3rd probe:
• …
• ith probe:	(h(key) + i*g(key)) % TableSize



Double	Hashing	Analysis

• Intuition:	Because	each	probe	is	“jumping”	by	g(key) each	time,	we	
“leave	the	neighborhood”	and “go	different	places	from	other	initial	
collisions”

• Requirements	for	second	hash	function:

• Example	of	double	hash	function	pair	that	works:
• h(key) = key % p
• g(key) = q – (key % q)
• 2 < q < p
• p and	q are	prime



More	Double	Hashing	Facts

• Assume	“uniform	hashing”	
• Means	probability	of	g(key1) % p == g(key2) % p is	1/p

• Non-trivial	facts	we	won’t	prove:
Average	#	of	probes	given	l (in	the	limit	as	TableSize→¥ )

• Unsuccessful	search	(intuitive):

• Successful	search	(less	intuitive):

• Bottom	line:	unsuccessful	bad	(but	not	as	bad	as	linear	probing),	but	
successful	is	not	nearly	as	bad
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Charts
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Rehashing



Rehashing

• What	do	we	do	if	the	table	gets	too	full?

• How	do	we	copy	over	elements?



Rehashing

• What’s	“too	full”	in	Separate	Chaining?

• “Too	full”	for	Open	Addressing	/	Probing



Rehashing

• How	big	do	we	want	to	make	the	new	table?

• Can	keep	a	list	of	prime	numbers	in	your	code,	since	you	likely	won't	
grow	more	than	20-30	times	(2^30	=	1,073,741,824)


