CSE 373: Data Structures and Algorithms

Lecture 7: Hash Table Collisions

Instructor: Lilian de Greef
Quarter: Summer 2017

Today

- Announcements
- Hash Table Collisions
- Collision Resolution Schemes
- Separate Chaining
- Open Addressing / Probing
- Linear Probing
- Quadratic Probing
- Double Hashing
- Rehashing

Announcements

- Reminder: homework 2 due tomorrow
- Homework 3: Hash Tables
- Will be out tomorrow night
- Pair-programming opportunity! (work with a partner)
- Ideas for finding partner: before/after class, section, Piazza
- Pair-programming: write code together
- 2 people, 1 keyboard
- One is the "navigator," the other the "driver"
- Regularly switch off to spend equal time in both roles
- Side note: our brains tend to edit out when we make typos
- Need to be in same physical space for entire assignment, so partner and plan accordingly!

Review: Hash Tables \& Collisions

Hash Tables: Review

- A data-structure for the dictionary ADT
- Average case O(1) find, insert, and delete (when under some often-reasonable assumptions)
- An array storing (key, value) pairs
- Use hash value and table size to calculate array index
- Hash value calculated from key using hash function

Hash Table Collisions: Review

- Collision: when two keys map to the same location in the hash table
-We try to avoid them by having a good hash function (unique indexes)
- Unfortunately, collisions are unavoidable in practice
- Number of possible keys >> table size

- No perfect hash function $\&$ table-index combo

Collision Resolution Schemes: your ideas

Collision Resolution Schemes: your ideas

Separate Chaining

One of several collision resolution schemes

Separate Chaining

All keys that map to the same table location (aka "bucket") are kept in a list ("chain").

Example:
insert 10, 22, 107, 12, 42
and TableSize = 10
(for illustrative purposes, we're inserting hash values)

Separate Chaining: Worst-Case

What's the worst-case scenario for find?
all keys indexed to the same bucket

What's the worst-case running time for find?
$O(n)$
linear

But only with really bad luck or really bad hash function
G not worth avoiding
worst - case

Separate Chaining: Further Analysis

- How can find become slow when we have
$\begin{aligned} & \text { a good hash function? } \quad \stackrel{\text { waybigser }}{ } \\ & \quad \neq \text { elements }\end{aligned}>$ table size mean long chains
- How can we reduce its likelihood?

Maintain a good ratio of \# elements to the table size (resize the table as needed)

Rigorous Analysis: Load Factor

Definition: The load factor (λ) of a hash table with N elements is

$$
\lambda=\frac{N}{\text { table size }}
$$

$$
\begin{aligned}
& N=+a b l e \text { size } \\
& \text { averge: } 1 \text { element/buen }
\end{aligned}
$$

Under separate chaining, the average number of elements per bucket is

For a random find, on average

- an unsuccessful find compares against
 \sim items
- a successful find compares against $\underline{\lambda} / 2$ items

Rigorous Analysis: Load Factor

Definition: The load factor (λ) of a hash table with N elements is

$$
\lambda=\frac{N}{\text { cable size}} \leftarrow
$$

To choose a good load factor, what are our goals?

- short chains (not too high)
- efficient use of table space (not tor low)
So for separate chaining, a good load factor is $1,1.5$, or 2

Open Addressing / Probing

Another family of collision resolution schemes

Idea: use empty space in the table

Open Addressing Terminology

Trying the next spot is called probing (also called opeh $\begin{aligned} & \text { addressing, }\end{aligned}$

- Wejust did linear probing

- In general have some probe function f and use $(\underbrace{\text { h(key }})+\underbrace{f(i)})$ \% TableSize

Dictionary Operations with Open Addressing insert finds an open table position using a probe function

What about find?

- must use same probe function to "retrace the trail"
- unsuccessful search where

What about delete? ens ry bucket

- use "lazy" deletion
\Rightarrow replace element with marker/flag to say "no data here, but lop probing"
- Note: delete with separate chaining is plain-old list-remove

Practice:

The keys $12,18,13,2,3,23,5$ and 15 are inserted into an initially empty hash table of length 10 using open addressing with hash function $h(k)=k$ mod 10 and linear probing. What is the resultant hashrtable?

| | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Open Addressing: Linear Probing

- Quick to compute! ©

$$
\begin{aligned}
\lambda>1 \quad \text { (\#elements }>\text { table } \\
\text { size }
\end{aligned}
$$

- But mostly a bad idea. Why?

(Primary) Clustering

Linear probing tends to produce clusters, which lead to long probing sequences

- Called primary clustering
- Saw this starting in our example

[R. Sedgewick]

Analysis of Linear Probing

- For any $\lambda<1$, linear probing will find an empty slot
- It is "safe" in this sense: no infinite loop unless table is full
- Nontrivial facts we won't prove:

Average \# of probes given λ (in the limit as TableSize $\rightarrow \infty$)

- Unsuccessful search: $\frac{1}{2}\left(1+\frac{1}{(1-\lambda)^{2}}\right)$

- Successful search: $\frac{1}{2}\left(1+\frac{1}{(1-\lambda)}\right)$ number of probes

$$
\left\{\begin{array}{l}
\lambda=0.75 \rightarrow \text { expect } \sim 8.5 \text { probes } \\
\lambda=0.9 \rightarrow \text { expert } \sim 50 \text { probes }
\end{array}\right.
$$

- This is pretty bad: need to leave sufficient empty space in the table to get decent performance (see chart)

Analysis: Linear Probing

- Linear-probing performance degrades rapidly as table gets full
(Formula assumes "large table" but point remains)

- By comparison, chaining performance is linear in λ and has no trouble with $\lambda>1$

Any ideas for alternatives?

Different
probe
function.

Open Addressing: Quadratic Probing

- We can avoid primary clustering by changing the probe function

$$
(h(k e y)+f(i)) \% \text { TableSize }
$$

- A common technique is quadratic probing: $f(i)=i^{2}$
- So probe sequence is:

- $1^{\text {st }}$ probe: $($ h (hey $)+15 \%$ table size
- $2^{\text {nd }}$ probe: $\left(h\left(\operatorname{mog}^{2}\right)+4\right) \%$ table size
- 3 rd probe: $(h(h y)+a) \%$ table

$$
f(1)=1^{2}=1
$$

-.

- (tit) probe: (hokey) + TableSize
- Intuition: Probes quickly "leave the neighborhood"

Quadratic Probing Example \#1

TableSize $=10$
Insert:

$i^{\text {th }}$ probe: (h (key) $+i^{2}$) $\%$ TableSize

Quadratic Probing Example \#2

TableSize $=7$
Insert:

$\frac{76}{40}$	$(76 \% 7=6)$ 4 $\frac{48}{5}$ $\frac{5}{5}$ $\frac{55}{47}$$\quad$$(48 \% 7=6)$ $(5 \% 7=5)$ $(55 \% 7=6)$ $(47 \% 7=5)$

