CSE 373: Data Structures and Algorithms

Lecture 7: Hash Table Collisions

Instructor: Lilian de Greef
Quarter: Summer 2017

Today

* Announcements
 Hash Table Collisions

* Collision Resolution Schemes
* Separate Chaining
* Open Addressing / Probing

* Linear Probing
* Quadratic Probing
* Double Hashing

* Rehashing

Announcements

e Reminder: homework 2 due tomorrow

* Homework 3: Hash Tables
* Will be out tomorrow night
 Pair-programming opportunity! (work with a partner)
* Ideas for finding partner: before/after class, section, Piazza

* Pair-programming: write code together
» 2 people, 1 keyboard
* One is the “navigator,” the other the “driver”
Regularly switch off to spend equal time in both roles
Side note: our brains tend to edit out when we make typos

Need to be in same physical space for entire assignment, so partner and plan
accordingly!

Review: Hash Tables & Collisions

Hash Tables: Review

* A data-structure for the dictionary ADT

* Average case O(1) find, insert, and delete
(when under some often-reasonable assumptions)

* An array storing (key, value) pairs

e Use hash value and table size to calculate
array index

* Hash value calculated from key using
hash function

find, insert,ordelete
(key, value)

U

apply hash function |
h(key) = hash value

U

index = hash value %
table size

U

if collision, apply g
collision resolution

U

array[index] = (key, value)

Hash Table Collisions: Review

* Collision: 1, Yo DQYS W& to the %alne
P W S N VN W PN ’kﬁ\\/)k{

* We try to avoid them by [, - e s d
l/\a S\/\ (p\/\\/\ C'H CYVaN (\)\/\L 1 v h\\/\ﬂv&@>

* Unfortunately, collisions are unavoidable in practice

* Number of possible keys >> table size
* No perfect hash function & table-index combo

Collision Resolution Schemes: your ideas

=
—) S| elel] |

e | R

[

jul !

Collision Resolution Schemes: your ideas

> | Pl el
\/\/—J

Separate Chaining

One of several collision resolution schemes

J

Separate Chaining

0 ”“m All keys that map to the same
1 table location (aka “bucket”)
2 | —plez \ [z \ ke are kept in a list (“chain”).

3

4 Example:

5 insert _19, 22,107,12, 42

6 ﬂ and TableSize =10
7|l (for illustrative purpcﬁs,

8 we’re inserting hash values)
9

Separate Chaining: Worst-Case
A D—A Yoo

What’s the worst-case scenario for find?

Al keys ndaved o *H«g
S G /\O\AC\&L/f
What'’s the worst-case running time for £ind?]
O [v\> NN

But only with really bad luck or really bad hash function

(/7 ngt uwrk\/\ a\toﬁ\ﬁt\v\f}

D0 Y

Separate Chaining: Further Analysis

2D .
. . -_TDQ_\m -
* How can f£ind become slow when we have — .

a good hash function? B bigges o .
A olemants =2 J(&Let& S(e

"y G\ lo V\f> CL\ALV\B

* How can we reduce its likelihood?
/\/\@1\,\—‘(@1\/\ o oc& =6 QQC
4 oS A 4l 4ol size
(resiae e A as \/\Qackgéb

Rigorous Analysis: Load Factor

Definition: The load factor (A) of a hash table with N elements is
N =40 Seze

N
A — . 4 ,(QL
table size I %”‘

Under separate chaining, the average number of elements per bucket is 2 ~

For a random f£ind, on average "] T /
* an unsuccessful £ind compares against 7\ items —

* a successful £ind compares against 7\/L items

\/

Rigorous Analysis: Load Factor

Definition: The load factor (A) of a hash table with N elements is

=
O~ e -

To choose a good load factor, what are our goals?\

- S[/\o(\' dsions (not oo L\‘Agl\

=)Q/éqcic: T LG Qg ’Lﬁk”k@ 7 kA=
(\/\5'E —£6 6 low\
So for separate chaining, a good load factoris 2 CALD ey 7

Open Addressing / Probing

Another family of collision resolution schemes

ldea: use empty space in the table

01D e If h (key) is already full,
I po™ e try (h(key) + 1) % TableSize. Iffull,
2 |10 e try (h(key) + 2) $ TableSize. Iffull,
3 * try (h(key) + 3) ;%f TableSize. If full...
4
5 * Example: insert @, 1/9, 8,109, 10 e
6 Lo
9 A
7
8 '}% @)/ fg% o/o kb -
9 LA

Open Addressing Terminology

\s 3
Trying the next SpOt is called (l;ro N 6 (aISO called Wv{fﬁ V\j)

* We just did L‘V\MW ﬁ?mL;\v\ﬂ}

ith probe was (h(key) + 1) % TableSize

* In general have some ?féloL Lot o\ £ and use

(h(key) + £(1)) % TableSize
o~ N~/

Dictionary Operations with Open Addressing

insert finds an open table position using a probe function

What about £ind? ,
st wee sawe ?yo\,& Lonction s
Sretvtee 4)

— WASW (Cess In | seac e\ L b

el g~ ’
What about delete? z 1§ 7 i cleed

- 2 Ylaz “&Q‘%{b\/\
Lo reko\d\ Ce /,QKQWV\J/ L,Jl—-\r\/\ V\/\@VLCL K/Q&
~0o 3&7 "o kata \,\u,e/ > ut Lu,r, rmlo'»\}'

* Note: delete with separate chaining is plain-old list-remove

Gy

Practice:

The keys 12, 18, 13@ 3, 23, 5 and 15 are inserted into an initially empty hash table
of length 10 using open addressing with hash function h(k) = k mod 10 and linear
probing. What is the resultant hashrtable? /

>

0 0 0 0
1 1 1 1

2 2 2 12 / 2 12 2 12,2
3 23 3 13 3 13 3] 13,3,23
4 4 4 2 4

5 15 5 5 5 3 5 5, 15

6 6 6 23 6

7 7 7 5 7

8 18 8 18 8 18 8 8

9 9 9 9

(A) (B) (C) > (D)

Open Addressing: Linear Probing

N1 Elind, > L
 Quick to compute! © 9ize

* But mostly a bad idea. Why?

NN e e e
LI oo ||® 0 e e ee e e e l|e oo oo e el]

(Primary) Clustering

Linear probing tends to produce
clusters, which lead to long probing
sequences

* Called prien ary clnstentny

e Saw this starting in our example

LI
umuumuuuuuummmu
LIl jenei®

uuuuuuuuuuu

Ly
.wuuumé@muuuuu

oie)
b _yenelen@t LI

[
uuuuéuwmwuumuu

uuuuuu@ummuu

s 0li0ll®
e

(L]l
. L!H!’JL'—MJLJ
e ® Lﬁ@&wmwmmu

|
. L'Lll!i‘—'—ﬁumm
LR [R. Sedgewick]

pid

Analysis of Linear Probing

* Forany A< 1, linear probing will find an em
* |tis “safe” in this sense: no infinite loop unless table is full

* Non-trivial facts we won’t prove:
Average # of probes given A (in the limit as = 8 =00
1 As la w~AS Ao Tn cv—<en Sey (“xfkj
(1—/1)2j closer o /L3 , So AD e —k‘r\<
(V\\’\\N\\?M oﬁ Yw\a—Lf
A= 035 = wgect NS by
A= 0.A — LYr,)_/(’f ~ %0 (,wsz

* This is pretty bad: need to leave sufficient empty space in the table to get decent
performance (see chart)

* Unsuccessful search: %(1+

* Successful search: l 1_,_#
2 (1-2)

Analysis: Linear Probing g

* Linear-probing performance degrades rapidly as table gets full
(Formula assumes “large table” but point remains)

Linear Probing Linear Probing
« 20.00 » 350.00
2 1800 e /
—> a1 |
© 16.00 / 4
e_— 14.00 linear probing e_' 250.00 linear probing
O 12.00 / found © 500,00 found
* 10.00 / o
o 10)))) .
0 3800 / linear probing ap 150.00 linear probing
c / not found o l not found
o 6.00 / @ 100.00
2 4.00 z /
< |~ <)
2.06—. — 50.00 J
0.00 0.00
0.00 0.20 0.40 0.60 0.80 1.00 0.00 0.20 0.40 0.60 0.80 1.00
Load F%ctor T Load Factor T

* By comparison, chaining performance is linear in A and has no trouble with A>1

Any ideas for alternatives? ‘

P e

Open Addressing: Quadratic Probing

* We can avoid priang by changing the probe function
(h(key) + f(i)) % TableSize S r/o\»l“§->
(Y =1
* A common technique is quadratic probing: £ (i) = i?
* So probe sequence is:
* 0% probe: h (key) % TableSize o
* 15t probe: \,\(\4Q$ X \\) /4ol sax L= = ﬂ_
e Jnd probe; (\'\(‘4&7) 4+ & ’/ ,LQLLQ geeR (C((z_,w -~ Z’L - ('T

* 3rd probe: (L\ (\4,.,7\ = Q) Y, ol e

'@prObEI (h (ke + @ S TableSize

* Intuition: Probes quickly “leave the neighborhood”

Quadratic Probing Example #1
L4

TableSize = 10
59 Insert:
B 89
. 18
49 Ax\ 710 =0
58 (?*\f/.(bf <<
79 (%*%Y.‘\b -

—

\%
o

O 0 3 N O bk~ W NN~ O

it probe: (h (key) + 12?) % TableSize

Quadratic Probing Example #2

0 [4% TableSize =7

1 Insert: L
2 < 76 (76 % 7 = 6)
3 | <% 40 (40 % 7 = 5)
4 48 (48 % 7 = 6)
5 | 40O 5 (5%7=5)
6 | 70 55 (55%7=6)

YL\ILLQ(Tov m(\ 2% (27/& ’3)/3 l % (47 %7 = 5)

C\S O ’/Z/' %) 6 (.
ith probe: (h (key) + i?) % TableSize
L T

