CSE 373: Data Structures and Algorithms

Lecture 7: Hash Table Collisions

Instructor: Lilian de Greef Quarter: Summer 2017

Today

- Announcements
- Hash Table Collisions
- Collision Resolution Schemes
 - Separate Chaining
 - Open Addressing / Probing
 - Linear Probing
 - Quadratic Probing
 - Double Hashing
- Rehashing

Announcements

- Reminder: homework 2 due tomorrow
- Homework 3: Hash Tables
 - Will be out tomorrow night
 - Pair-programming opportunity! (work with a partner)
 - Ideas for finding partner: before/after class, section, Piazza
- Pair-programming: write code together
 - 2 people, 1 keyboard
 - One is the "navigator," the other the "driver"
 - Regularly switch off to spend equal time in both roles
 - Side note: our brains tend to edit out when we make typos
 - Need to be in same physical space for entire assignment, so partner and plan accordingly!

Review: Hash Tables & Collisions

Hash Tables: Review

- A data-structure for the dictionary ADT
- Average case O(1) find, insert, and delete (when under some often-reasonable assumptions)
- An array storing (key, value) pairs
- Use hash value and table size to calculate array index
- Hash value calculated from key using hash function

find, insert, or delete (key, value) apply hash function h(key) = hash valueindex = hash value % table size if collision, apply collision resolution array[index] = (key, value)

Hash Table Collisions: Review

· Collision: when two keys map to the same location in the hash table

• We try to avoid them by having a good hash function (unique indexed they I

- Unfortunately, collisions are unavoidable in practice
 - Number of possible keys >> table size
 - No perfect hash function & table-index combo

Collision Resolution Schemes: your ideas

Collision Resolution Schemes: your ideas

Separate Chaining

One of several collision resolution schemes

Separate Chaining

All keys that map to the same table location (aka "bucket") are kept in a list ("chain").

Example:

insert 10, 22, 107, 12, 42 and **TableSize** = 10

(for illustrative purposes, we're inserting hash values)

Separate Chaining: Worst-Case

What's the worst-case scenario for find?

all keys indexed to the same bucket

What's the worst-case running time for find?

6(n) linear

But only with really bad luck or really bad hash function

La not worth avoiding worst-case

Separate Chaining: Further Analysis

 How can find become slow when we have a good hash function?

elements >> table size mean long chains

How can we reduce its likelihood?

Maintain a good ratio of

Helements to the table size

(resize the table as needed)

Rigorous Analysis: Load Factor

Definition: The **load factor** (λ) of a hash table with N elements is

$$\lambda = \frac{N}{table \ size}$$

N=table SiZe averge: 1 element

Under separate chaining, the average number of elements per bucket is

For a random find, on average

• an unsuccessful find compares against _______

• a successful find compares against 2/2 items

Rigorous Analysis: Load Factor

Definition: The **load factor** (λ) of a hash table with N elements is

So for separate chaining, a good load factor is $\frac{1}{2}$, $\frac{1}{4}$.

Open Addressing / Probing

Another family of collision resolution schemes

Idea: use empty space in the table

- If h (key) is already full,
 - try (h(key) + 1) % TableSize. If full,
 - try (h(key) + 2) % TableSize. If full,
 - try (h(key) + 3) % TableSize. If full...
- Example: insert 38, 19, 8, 109, 10

Open Addressing Terminology

Trying the next spot is called probing (also called addressing)

- We just did inear probing

 ith probe was (h(key) + i) % TableSize
- In general have some probe function f and use (h(key) + f(i)) % TableSize

Dictionary Operations with Open Addressing

insert finds an open table position using a probe function

What about find?

- must use same probe function to

"retrace the trail"

- unsuccessful search when
reach empty bucked

What about delete?

- use "lazy" deletion
Lo replace element with marker / flag
to say "no deta here, but keep probing"

• Note: delete with separate chaining is plain-old list-remove

Practice:

The keys 12, 18, 13, (2), 3, 23, 5 and 15 are inserted into an initially empty hash table of length 10 using open addressing with hash function h(k) = k mod 10 and linear probing. What is the resultant hash table?

	(A)		(B)	_		(C)			(D)
9		9			9	15	Ç)	
8	18	8	18		8	18	8	3	18
7		7			7	5	7	7	
6		6			6	23	6	6	
5	15	5	5		5	3	4	5	5, 15
4		4			4	2	۷	1	
3	23	3	13		3	13	3	3	13, 3, 23
2	2	2	12		2	12	2	2	12, 2
1		1)	1		1		
0		0] 🔑	0		()	
									<u> </u>

Open Addressing: Linear Probing

- Quick to compute! ©
- But mostly a bad idea. Why?

(Primary) Clustering

Linear probing tends to produce clusters, which lead to long probing sequences

- · Called primary clustering
- Saw this starting in our example

Analysis of Linear Probing

- For any $\lambda < 1$, linear probing will find an empty slot
 - It is "safe" in this sense: no infinite loop unless table is full
- Non-trivial facts we won't prove: Average # of probes given λ (in the limit as **TableSize** $\rightarrow \infty$)

 - Unsuccessful search: $\frac{1}{2}\left(1+\frac{1}{(1-\lambda)^2}\right)$ Successful search: $\frac{1}{2}\left(1+\frac{1}{(1-\lambda)^2}\right)$ Successful search: $\frac{1}{2}\left(1+\frac{1}{(1-\lambda)}\right)$ $\begin{cases}
 \lambda = 0.75 \\
 \lambda = 0.9
 \end{cases}$ Successful search: $\frac{1}{2}\left(1+\frac{1}{(1-\lambda)}\right)$
- This is pretty bad: need to leave sufficient empty space in the table to get decent performance (see chart)

Analysis: Linear Probing

The sac

• Linear-probing performance degrades rapidly as table gets full (Formula assumes "large table" but point remains)

• By comparison, chaining performance is linear in λ and has no trouble with $\lambda > 1$

Any ideas for alternatives?

Different Lunction.

Open Addressing: Quadratic Probing

We can avoid primary clustering by changing the probe function

```
(h(key) + f(i)) % TableSize
```

- (men polins:)
- A common technique is quadratic probing: $f(i) = i^2$
 - So probe sequence is:

 - 0th probe: h (key) % TableSize
 1st probe: (h (key) + 1) // table size
 2nd probe: (h (huy) + 4) // table size
 3rd probe: (h (huy) + 9) // table

$$f(1) = 1^{2} = 1$$

- (ith) probe: (h (key) + (2) % TableSize
- Intuition: Probes quickly "leave the neighborhood"

Quadratic Probing Example #1

ith probe: (h(key) + i²) % TableSize

Quadratic Probing Example #2

47