CSE 373: Data Structures and Algorithms

Lecture 6: Finishing Amortized Analysis; Dictionaries ADT;
Introduction to Hash Tables

Instructor: Lilian de Greef
Quarter: Summer 2017

Today:

* Finish up Amortized Analysis
* Dictionary ADT
* Introduce Hash Tables

Reminder: No class on Monday!

Unofficial holiday — have a good 4-day weekend! ©

—

2@ s
: A —

* Will ask you to do a ~30 minute activity to make up for last class time
« Remember that homework 2 is also due the day after we’re back

Homework 2 update:

* There was a typo (woops!) for problem 7
* The website now has a corrected version.

Amortized Analysis

How we calculate the average time!

Amortized Cost

The amortized cost of n operations is the worst-case total cost of the
operations divided by n.

Shorthand:
If T(n) = worst-case (upper bound) of total cost
for n=number of operations

— Amortized Cost=T(n) / n

n/(_{
[:7 A

t‘k COY»LLS
Example: Array Stack BISEEER
M e

What’s the amortized cost of calling push () n times
if we double the array size when it’s full? P

o \
7~

N
n operations:

* n pushes at O(1) each -> total cost =@)
 cost of resizing=n+n/2 +n/4+n/8 + .. 5@» total cost < 2n
N —

->T =n+2n @ -

> Amortlzed cost = T(n)/n :ég/n_:ir
-> Amortized Running time = O(1)

The amortized cost of n operations is the wor
case total cost of the operations divided by n.

ﬂ

Another Perspective: Paying and Saving “Currency”

A

B

C

D

/"\
{
7
N

1 operation costs us
515 to the computer

{ /"T'\

W)

Another Perspective: Paying and Saving “Currency”

f*}?ﬁ\ Use $2 for each pusly.
/’T\
\ to computer,

\
[b k

Al B | C| D

;)_‘

A B | C|D]|E

BANK o
Spend our savings in

4 the bank to resize.
That way it only costs
$1 to push(E)!

Potential Function

FlEo

Example #2: Queue made of Stacks @@zﬁ

A sneaky way to implement Queue using two Stacks

Example walk-through:

(,f\f‘f\
* enqueue A /,%/A
* enqueue B 15
* enqueue C
<

* dequeue
* enqueue D
* enqueue E

* dequeue l;:
* dequeue

* dequeue @ @

/\»D

Example #2: Queue made of Stacks

A sneaky way to implement Queue using two Stacks

Queue<E> {

Stack<E> in = Stack<E> () ;
Stack<E> out = Stack<E>() ;
volid enqueue(E x){ in.push(x);

E dequeue () {
(out.isEmpty()) {
(!'in.isEmpty())
out.push (in.pop())

out.pop();

{

}

L

Wouldn’t it be nice to have a queue of t-shirts to
wear instead of a stack (like in your dresser)?

So have two stacks

e in: stack of t-shirts go after you wash them

e out: stack of t-shirts to wear

* if outis empty, reverse in into out

Example #2: Queue made of Stacks (Analysis)

Queue<E> { Assume stack operations are (amortized) O(1).

Stack<E> in = Stack<E>() ; What’s the worst-case for dequeue () ?

Stack<E> out = Stack<E>() ; A O(V\ (WWI*L‘(*") o i Vit

void enqueue(E x){ in.push(x); } ot st a el g QMYH\B
What operations did we need to do to reach

t

E dequeue () {

(out.isEmpty()) { that condition (starting with an empty Queue)?
(!'in.isEmpty ()) {
out.push (in.pop()) ; — @Q{MWY (V\ ‘rrhgll\(Q "\
}
} Hence, what is the amortized cost?
out.pop () ; O((/\
} ;__) — 0O (&\

So the average time for dequeue () is:

in out . (\)

Example #2: Using “Currency” Analogy

“Spend” %for every enqueue — $1 to the “computer”, $1 to the “bank”.
SRR
Example walk-through:
* enqueue A
* enqueue B

>
* enqueue C -
A
_—
=

ANK

* enqueue E A\ m
* dequeue

* enqueue D

N OUt Potential Function

Example #3: (Parody / Joke Example)

Lectures are 1 hour long, 3 times per week, so I’'m supposed to
lecture for 27 hours this quarter.

If | end the first 26 lectures 5 minutes early, then I'd have
“saved up” 130 minutes worth of extra lecture time.

Then | could spend it all on the last lecture and can keep you
here for 3 hours (bwahahahaha)!

(After all, each lecture would still be 1 hour amortized time)

Wrapping up Amortized Analysis

* In what cases do we care more about the average / amortized run
timer- Fo v wov X - cages .

LbyX 0CCa st WOoTSd-cag 8 W tus
* In what cases do we care more about the worst-case run time?

TJL A TneveaIer Tu(LL\R7 ?
6 k- case (S 009%76

Taking a step back...

What have we covered so far?

» Abstract Data Types (ADTSs)

 Two data structures
 Stacks (both using arrays and linked-lists)
* Queues (including circular queues)

* Asymptotic Analysis
* Intuition for Big-O
Formally proving Big-O using Inductive Proofs
Calculating Big-O for recursive methods using Recurrence Relations
Big-O’s cousins: Big-Q, Big-0, little-o, little-w
Average running time using Asymptotic Analysis

Whew!

That was a *lot™ of algorithm analysis.

Now shifting gears completely...
on to some new data structures!

key va e Tﬁl/
N
q , \
/ \,\)QVOQ\ O&LﬁV\\\hQV\

Dictionary ADT

Dictionary ADT
MV\KV\«S
- se—< u<[(L(zy) \/K(U\L> ?@{\(5

@W’YCGV\ S
—n YQX’E (|/¢77>V'°(“¢>
_ KLKQ;F,Q (\/uy
_ \)()J\&\Iﬁ\f\w“’d% Nw\lﬁ(mb
_ ,CW\J (\1\:&7)

Uses of Dictionary ADT

Used to store information with some key and retrieve it efficiently —
lots of programs do that!

Examples:
* Contacts in a phone (name: number, e\nﬁil)
Orca/Husky cards (ac@iﬁﬁer: balance)
Genome maps (DNA sequence: location on genome)
Lilian’s database of your grades (student ID: assighments, grades)

Networks (router tables), Operating Systems (page tables), Compilers (symbol
tables), Databases

e ... and so much more!

Possibly the most widely used ADT!

Motivating Hash Tables

Creative thinking time: how could you implement a dictionary using
what you know so far (namely, linked-lists and arrays)?
e.g. map names (key) to phone numbers (value)

vy TR [E) -

Ll sy \ery
Lt)ﬂ@@

Motivating Hash Tables

Creative thinking time: how could you implement a dictionary using
what you know so far (namely, linked-lists and arrays)?
e.g. map names (key) to phone numbers (value)

Motivating Hash Tables T T
A
Running times for Dictionary operations with n (key, value) pairs:
insert find delete
&t S
N (1 oy 69&) 8?:? O (V\> O/V\>
\edd-List ~
L 50 O(Q O(~)
S5\ JCVFO‘\7 0 [V\) O (\05ﬁ> O /V\>

“Magic Array” 0, C(> O (\> ®6>

“Magic Array” Cong ke Instars (V) = 5

Use key to compute array index for an item in O(1) time
Example: phone contacts (name, number)
name - @ﬂcomputelfrlde;&_\(name) — array[index] =(name, number)

@) ll@’@géﬂ\/g‘mh}oig > a(rmK/{‘;):(}ok/\lg,q@C)

(é\%r 365-4320) ?V\h\(= = avres [O) - @Wﬁ*és(mﬂ
(E&se (- (y & oAyl
= D B - “ S

Gy U Torn N
F6s5 0 IZ’S’C(SC)

@ Array”

Use key to compute array index for an item in O(1) time
Example: phone contacts (name, number)

name - index=computelIndex (name) - array[index] =(name, number)
N /)\

«

~

What would be important about the indices from computeIndex?

Haye AL e n—x Nlr\a'\.gy; v ,Q\f(/‘z],(/Q7
/

Introducing... Hash Tables!

Hash Tables: closest thing to our “Magic Array”

» Average case’O(1Pfind, insert, and delete
(when under some often-reasonable assumptions)

e Qur computeIndex function Hash Table
is called a]’\ﬁS\/\ L e+ 0g N
T 0
* The 1ndex from the hash function
is called a
\V\O\SL\ \/ﬂh/\{ hash functian:
_— index
olso AS -
all possible keys
P
‘ tableSize —1

Hash Tables: Example Illustration

hash
keys function_ buckets

TR 521-8976
/-A
e —
waSml :

Sandra Dee
'\—— 14 | 521-9655

15

\UJ.(- g-(_:r S’{\(L(Cﬂﬂfc\t) = Sx~e V\UK/L_A/
Hash Functions FT e

Hash functions need to...

éjp I\acve_ UV\‘LC.){!N\(\J<7 (wvd,s Pw\dﬁs Q9 ,QV&V\(\/ as C\?éffl«L(L>
o oo deterininsti ¢ ldvways oo hash 0, seo l“7>

o)

For a person’s name, would it be a good hash function to...

* Use the ASCII values of first and second letter? — Dge , Noe \/ ’_3_0\/\ I~ ..
* Use the number of letters in the name? 25 T

) Ay /Ls S&2 (Mo s

' % Coes re

Example Hash Function

Hash function “djb2”:

unsigned long
hash(unsigned char *str)

{
unsigned long hash é:%%%l?
int c;

while (c = *str++)

hash = ((hash << 5) + hash) + c;

return hash;

/* hash

3

Hash Functions

* Many datatypes and Objects are hashable

* When writing a class, can make it hashable!

5d~d>
Ca

Do so by implementing hashCode method

T e s
L)VW\—* N L/\d(/\?d Afs

xS u(/\\‘Y
s b o L
« We'll focus on ints and Strings in this cldss.” < vy Obyect

;_—\

Collisions

Happens when two elements get the same inde
practice) (’(7"‘/’“"\ = 4 (}/
ST

Jdhavoidable in
=4
RKW (‘C\/wﬂé"\/ "MB

((] rl\nszﬂ(Sawa)g >
QVY\C;J.LWIW) \M

Homework: come up with a strategy, write it down on paper, and bring
it to class on Weds

Hash Table roles

When hash tables are a reusable library, the division of responsibility
generally breaks down into two roles:

\/\M\A(E> - \,Y\AQL\W\\V‘L 2 AL\/
client hash table library

W collision
int pos—m) table-index .} :
. resolution

\M\/
[Ké\dook‘.? %"”’A (AL‘?A
We will learn both roles, but most programmers “in the real world”
spend more time as clients while understanding the library

Hash Tables

* There ar@possible keys (m typically large, even infinite)
* We expect our table to have onl@items
* nis much less than m (often written n << m)

—

Many dictionaries have this property

* Compiler: All possible identifiers allowed by the language vs. those used in some file
of one program

* Database: All possible student names vs. students enrolled

* Al: All possible chess-board configurations vs. those considered by the current player

‘\/\KQ\/\ &V\O’\l\bv\ - L\&Q\\ \/a\b—ﬂ——"ﬁ Q\V\A,\y

Hash Table Size K79 = rewmaindey o

2 a/’ 16 — %} - ORW\Y{&@

* How can we keep hash values (i.e. the indices) within the table size?

('K(—;thz/g:lb ‘d,\é(uﬂ — hash (uﬂ /o 't,,\U.(2:2{
CTTTU T T l:“‘”*’”’ ke 23 R
) = \‘Jr — ﬂ/\obuy gl o Alisem
B S (L"'T D = I - \\Aa(&y O Co
 Table size usually prime
» Real-life data tends to have a pattern £

* "Multiples of 61" probably less likely than "multiples of 60" '
» Helpful for a collision-handling strategy we'll see next week

Review: Hash Tables thus far...

* The hash table is one of the most important data structures —

Supports only £ind, insert, and delete efficiently Y
» Have to search entire table for other operations_ RNETEANT— \>
. T e 2%
* Important to use a good hash function A

* Important to keep hash table at a good size

* Side-comment: hash functions have uses beyond hash tables —
Examples: Cryptography, check-sums

* Big remaining topic: Handling collision

\

Homework

Come up with a collision-resolution strategy, write it
down on paper, and bring it to class on Wednesday

Goal: prime our brains for learning the most common
collision-resolution strategies.

