CSE 373: Data Structures and Algorithms Lecture 6: Finishing Amortized Analysis; Dictionaries ADT; Introduction to Hash Tables

Instructor: Lilian de Greef
Quarter: Summer 2017

Today:

- Finish up Amortized Analysis
- Dictionary ADT
- Introduce Hash Tables

Reminder: No class on Monday!

Unofficial holiday - have a good 4-day weekend! ©

- Will ask you to do a ~30 minute activity to make up for last class time
- Remember that homework 2 is also due the day after we're back

Homework 2 update:

- There was a typo (woops!) for problem 7
- The website now has a corrected version.

Amortized Analysis

How we calculate the average time!

Amortized Cost

The amortized cost of n operations is the worst-case total cost of the operations divided by n.

Shorthand:
If $T(n)=$ worst-case (upper bound) of total cost for $n=$ number of operations
\Rightarrow Amortized Cost $=T(n) / n$

Example: Array Stack

What's the amortized cost of calling push () n times if we double the array size when it's full?

n operations:

- n pushes at $O(1)$ each $->$ total cost $=n$
- cost of resizing $=n+n / 2+n / 4+n / 8+\ldots \leq 2 n->$ total cost $\leq 2 n$
$->\mathrm{T}(n)=n+2 n=(3 n)$
\rightarrow Amortized cost $=\mathrm{T}(n) / n=3 n / n=3$
-> Amortized Running time $=0(1)$

Another Perspective: Paying and Saving "Currency"

Spend our savings in the bank to resize. That way it only costs \$1 to push(E)!

9

Potential Function

Example \#2: Queue made of Stacks

 A sneaky way to implement Queue using two Stacks

Example walk-through:

- enqueue A
- enqueue B
- enqueue C
- dequeue
- enqueue D
- enqueue E
- dequeue
- dequeue
- dequeue

Example \#2: Queue made of Stacks

A sneaky way to implement Queue using two Stacks

```
class Queue<E> {
    Stack<E> in = new Stack<E>();
    Stack<E> out = new Stack<E>();
    void enqueue(E x) { in.push(x); }
    E dequeue () {
        if(out.isEmpty()) {
            while(!in.isEmpty()) {
            out.push(in.pop());
            }
        }
        return out.pop();
    }
}
```


in

Wouldn't it be nice to have a queue of t-shirts to wear instead of a stack (like in your dresser)? So have two stacks

- in: stack of t-shirts go after you wash them
- out: stack of t-shirts to wear
- if out is empty, reverse in into out

Example \#2: Queue made of Stacks (Analysis)

```
class Queue<E> {
    Stack<E> in = new Stack<E>();
    Stack<E> out = new Stack<E>();
    void enqueue(E x) { in.push(x); }
    E dequeue() {
        if(out.isEmpty()) {
            while(!in.isEmpty()) {
                out.push(in.pop());
            }
        }
        return out.pop();
    }
}
```


Assume stack operations are (amortized) O(1).
What's the worst-case for dequeue () ?

What operations did we need to do to reach that condition (starting with an empty Queue)?

Hence, what is the amortized cost?

So the average time for dequeue () is:

Example \#2: Using "Currency" Analogy

"Spend" \$3 for every enqueue - \$1 to the "computer", \$ to the "bank".

Example walk-through:

- enqueue A
- enqueue B
- enqueue C
- enqueue D
- enqueue E
- dequeue

Example \#3: (Parody / Joke Example)

Lectures are 1 hour long, 3 times per week, so I'm supposed to lecture for 27 hours this quarter.
If I end the first 26 lectures 5 minutes early, then I'd have "saved up" 130 minutes worth of extra lecture time.
Then I could spend it all on the last lecture and can keep you here for 3 hours (bwahahahaha)!
(After all, each lecture would still be 1 hour amortized time)

Wrapping up Amortized Analysis

- In what cases do we care more about the average / amortized run time? Few worst-caser?

If we want to be fuse in general bot occasion worst-case is not two

- In what cases do we care more about the worst-case run time?

If n increases quickly?
If wort-case is costly.

Taking a step back...

(Take a deep breath)

What have we covered so far?

- Abstract Data Types (ADTs)
- Two data structures
- Stacks (both using arrays and linked-lists)
- Queues (including circular queues)
- Asymptotic Analysis
- Intuition for Big-O
- Formally proving Big-O using Inductive Proofs
- Calculating Big-O for recursive methods using Recurrence Relations
- Big-O's cousins: Big- Ω, Big- $\boldsymbol{\theta}$, little-o, little- ω
- Average running time using Asymptotic Analysis

Whew!

That was a *lot* of algorithm analysis.

Now shifting gears completely... on to some new data structures!

Dictionary ADT

Dictionary ADT
Meaning

- set of (key, value) pairs
- can compare keys

6 aeration s

- insert (key, value)
- delete (key)
- update value e (hey, new value)
- find (key)

Uses of Dictionary ADT

Used to store information with some key and retrieve it efficiently lots of programs do that!
Examples:

- Contacts in a phone (name: number, email)
- Orca/Husky cards (account number: balance)
- Genome maps (DNA sequence: location on genome)
- Lilian's database of your grades (student ID: assignments, grades)
- Networks (router tables), Operating Systems (page tables), Compilers (symbol tables), Databases
- ... and so much more!

Possibly the most widely used ADT!

Motivating Hash Tables

Creative thinking time: how could you implement a dictionary using what you know so far (namely, linked-lists and arrays)?
e.g. map names (key) to phone numbers (value)

Array
kuy/vale kuylvale
Linked List

Motivating Hash Tables

Creative thinking time: how could you implement a dictionary using what you know so far (namely, linked-lists and arrays)?
e.g. map names (key) to phone numbers (value)

Motivating Hash Tables

Running times for Dictionary operations with n (key, value) pairs:

"Magic Array"
compute Index $\left(J_{0 n}\right) \rightarrow 3$ array [3]

Use key to compute array index for an item in O(1) time
Example: phone contacts (name, number)

"Magic Array"

Use key to compute array index for an item in O(1) time
Example: phone contacts (name, number)
name \rightarrow index $=$ compute Index (name) \rightarrow array[index] = (name, number)

What would be important about the indices from compute Index?
Have different index for every key

Introducing... Hash Tables!

Closest thing to our "magic array"

Hash Tables: closest thing to our "Magic Array"

- Average case O(1) find, insert, and delete
(when under some often-reasonable assumptions)
- Our compute Index function is called hash function
- The index from the hash function is called a

(also hash)

tableSize -1 \square

Hash Tables: Example Illustration

$$
\text { key }=\text { Cersei } \quad h(\text { Cersei })=\text { same number }
$$

Hash Functions ever time

Hash functions need to...
have uniformity (mas inputs as even 'ty as possible)

- be deterministic (always same hash for same bey) $O(1)$

For a person's name, would it be a good hash function to...
-Use the ASCII values of first and second letter? \rightarrow Joe, Joel, Doh...

- Use the number of letters in the name?

1 bother

$$
s 42 \text { letters }
$$ rare

Example Hash Function

```
Hash function "djb2":
    unsigned long
    hash(unsigned char *str)
    {
    unsigned long hash = 5381;
    int c;
    while (c = *str++)
        hash = ((hash << 5) + hash) + c; /* hash * 33 + c */
    return hash;
}
```


Hash Functions

- Many datatypes and Objects are hashable
- When writing a class, can make it hashable!

Do so by implementing hashCode method
-We'll focus on ants and Strings in this class s.

Collisions

Happens when two elements get the same index (unavoidable in practice)

Homework: come up with a strategy, write it down on paper, and bring it to class on Weds

Hash Table roles

When hash tables are a reusable library, the division of responsibility generally breaks down into two roles:

We will learn both roles, but most programmers "in the real world" spend more time as clients while understanding the library

Hash Tables

- There arempossible keys (m typically large, even infinite)
- We expect our table to have onl n items
- \boldsymbol{n} is much less than \boldsymbol{m} (often written $\boldsymbol{n} \ll \boldsymbol{m}$)

Many dictionaries have this property

- Compiler: All possible identifiers allowed by the language vs. those used in some file of one program
- Database: All possible student names vs. students enrolled
- Al: All possible chess-board configurations vs. those considered by the current player
- ...
hash function \rightarrow hash valve \rightarrow index
Hash Table Size

$$
\begin{aligned}
& x \% y=\text { remainder of } \frac{x}{y} \\
& 3 \% 10 \rightarrow \frac{3}{10}=0 \text { remainder (5) }
\end{aligned}
$$

- How can we keep hash values (ie. the indices) within the table size? en.

$$
\begin{aligned}
& \text { 5. } \mathrm{tablesize}=10 \\
& \frac{11111111]}{6}
\end{aligned}
$$

$$
\begin{align*}
& \text { index }=\text { hash }\left(k_{\text {ley }}\right) \% \quad \text { tablesize } \\
& h(\text { hey } 1)=3 \rightarrow \text { index }=3 \\
& h(\text { my } 2)=17 \rightarrow \text { indy }=7 \\
& h(\text { hey 3) }=7 \rightarrow \text { indey }=7 \quad \text { collision'. }
\end{align*}
$$

- Table size usually prime
- Real-life data tends to have a pattern
- "Multiples of 61" probably less likely than "multiples of 60"
- Helpful for a collision-handling strategy we'll see next week

Review: Hash Tables thus far...

- The hash table is one of the most important data structures Supports only find, insert, and delete efficiently
- Have to search entire table for other operations
- Important to use a good hash function
- Important to keep hash table at a good size
- Side-comment: hash functions have uses beyond hash tables Examples: Cryptography, check-sums
- Big remaining topic: Handling collision

Homework

Come up with a collision-resolution strategy, write it down on paper, and bring it to class on Wednesday

Goal: prime our brains for learning the most common collision-resolution strategies.

