
Instructor:	Lilian	de	Greef
Quarter:	Summer	2017

CSE	373:	Data	Structures	and	Algorithms
Lecture	6:	Finishing	Amortized	Analysis;	Dictionaries	ADT;	

Introduction	to	Hash	Tables



Today:

• Finish	up	Amortized	Analysis
•Dictionary	ADT
• Introduce	Hash	Tables



Reminder:	No	class	on	Monday!

Unofficial	holiday	– have	a	good	4-day	weekend!	J

• Will	ask	you	to	do	a	~30	minute	activity	to	make	up	for	last	class	time
• Remember	that	homework	2	is	also	due	the	day	after	we’re	back



Homework	2	update:

• There	was	a	typo	(woops!)	for	problem	7
• The	website	now	has	a	corrected	version.



Amortized	Analysis
How	we	calculate	the	average	time!



Amortized	Cost

The	amortized	cost	of	n operations	is	the	worst-case	total	cost	of	the	
operations	divided	by	n.

Shorthand:
If	T(n)	=	worst-case	(upper	bound)	of	total	cost
for			n	=	number	of	operations

⇒ Amortized	Cost	=	T(n)	/	n



Example:	Array	Stack

What’s	the	amortized	cost	of	calling	push() n times	
if	we	double	the	array	size	when	it’s	full?

n operations:
• n pushes	at	O(1)	each		->		total	cost	=	n
• cost	of	resizing	=	n +	n/2	+	n/4	+	n/8	+	… ≤	2n		->	total cost ≤	2n

->	T(n)	=	n	+	2n =	3n
->	Amortized	cost	=	T(n)/n =	3n/n =	3
->	Amortized	Running	time	=	O(1)

The	amortized	cost	of	n operations	is	the	worst-
case	total	cost	of	the	operations	divided	by	n.



1	operation	costs	us	
1$	to	the	computer

Another	Perspective:	Paying	and	Saving	“Currency”

1

A B C D

A B C D E

23456789



Use	$2	for	each	push:
$1	to	computer,	
$1	to	bank

0 01234

Another	Perspective:	Paying	and	Saving	“Currency”

1

Potential	Function

A B C D

A B C D E

23456789Spend	our	savings	in	
the	bank	to	resize.
That	way	it	only	costs	
$1	to	push(E)!



Example	#2:	Queue	made	of	Stacks

in out

Example	walk-through:
• enqueue A
• enqueue B
• enqueue C
• dequeue
• enqueue D
• enqueue E
• dequeue
• dequeue
• dequeue

A	sneaky	way	to	implement	Queue	using	two	Stacks



Example	#2:	Queue	made	of	Stacks
A	sneaky	way	to	implement	Queue	using	two	Stacks

in out

class Queue<E> {
Stack<E> in = new Stack<E>();
Stack<E> out = new Stack<E>();
void enqueue(E x){ in.push(x); }
E dequeue(){

if(out.isEmpty()) {
while(!in.isEmpty()) {

out.push(in.pop());
}

}
return out.pop();

}
}

Wouldn’t	it	be	nice	to	have	a	queue	of	t-shirts	to	
wear	instead	of	a	stack	(like	in	your	dresser)?
So	have	two	stacks
• in:	stack	of	t-shirts	go	after	you	wash	them
• out:	stack	of	t-shirts	to	wear
• if	out is	empty,	reverse	in into	out



Example	#2:	Queue	made	of	Stacks	(Analysis)
class Queue<E> {
Stack<E> in = new Stack<E>();

Stack<E> out = new Stack<E>();
void enqueue(E x){ in.push(x); }

E dequeue(){

if(out.isEmpty()) {

while(!in.isEmpty()) {

out.push(in.pop());

}

}

return out.pop();

}

}

in out

Assume	stack	operations	are	(amortized)	O(1).
What’s	the	worst-case	for	dequeue()?

What	operations	did	we	need	to	do	to	reach	
that	condition	(starting	with	an	empty	Queue)?

Hence,	what	is	the	amortized	cost?

So	the	average	time	for	dequeue() is:



Example	#2:	Using	“Currency”	Analogy

in out

Example	walk-through:
• enqueue A
• enqueue B
• enqueue C
• enqueue D
• enqueue E
• dequeue

“Spend”	$2	for	every	enqueue – $1	to	the	“computer”,	$1	to	the	“bank”.

Potential	Function



Example	#3:	(Parody	/	Joke	Example)

Lectures	are	1	hour	long,	3	times	per	week,	so	I’m	supposed	to	
lecture	for	27	hours	this	quarter.
If	I	end	the	first	26	lectures	5	minutes	early,	then	I’d	have	
“saved	up”	130	minutes	worth	of	extra	lecture	time.
Then	I	could	spend	it	all	on	the	last	lecture	and	can	keep	you	
here	for	3	hours	(bwahahahaha)!
(After	all,	each	lecture	would	still	be	1	hour	amortized	time)



Wrapping	up	Amortized	Analysis

• In	what	cases	do	we	care	more	about	the	average	/	amortized	run	
time?

• In	what	cases	do	we	care	more	about	the	worst-case	run	time?



Taking	a	step	back…
(Take	a	deep	breath)



What	have	we	covered	so	far?

• Abstract	Data	Types	(ADTs)
• Two	data	structures
• Stacks (both	using	arrays	and	linked-lists)
• Queues (including	circular	queues)

• Asymptotic	Analysis
• Intuition	for	Big-O
• Formally	proving	Big-O	using	Inductive	Proofs
• Calculating	Big-O	for	recursive	methods	using	Recurrence	Relations
• Big-O’s	cousins:	Big-Ω,	Big-θ,	little-o,	little-ω
• Average	running	time	using Asymptotic	Analysis



Whew!

That	was	a	*lot*	of	algorithm	analysis.

Now	shifting	gears	completely…
on	to	some	new	data	structures!



Dictionary	ADT



Dictionary	ADT



Uses	of	Dictionary	ADT

Used	to	store	information	with	some	key	and	retrieve	it	efficiently	–
lots	of	programs	do	that!
Examples:
• Contacts	in	a	phone	(name:	number,	email)
• Orca/Husky	cards	(account	number:	balance)
• Genome	maps	(DNA	sequence:	location	on	genome)
• Lilian’s	database	of	your	grades	(student	ID:	assignments,	grades)
• Networks	(router	tables),	Operating	Systems	(page	tables),	Compilers	(symbol	
tables),	Databases
• … and	so	much	more!

Possibly	the	most	widely	used	ADT!



Motivating	Hash	Tables

Creative	thinking	time:	how	could	you	implement	a	dictionary	using	
what	you	know	so	far	(namely,	linked-lists	and	arrays)?
e.g.	map	names	(key)	to	phone	numbers	(value)



Motivating	Hash	Tables

Creative	thinking	time:	how	could	you	implement	a	dictionary	using	
what	you	know	so	far	(namely,	linked-lists	and	arrays)?
e.g.	map	names	(key)	to	phone	numbers	(value)



Motivating	Hash	Tables

Running	times	for	Dictionary	operations	with	n (key,	value)	pairs:

insert find delete

“Magic	Array”



“Magic	Array”

Use	key	to	compute	array	index	for	an	item	in	O(1)	time
Example:	phone	contacts	(name,	number)

name	→		index =	computeIndex(name)→		array[index] =	(name,	number)



“Magic	Array”

Use	key	to	compute	array	index	for	an	item	in	O(1)	time
Example:	phone	contacts	(name,	number)

name	→		index =	computeIndex(name)→		array[index] =	(name,	number)

What	would	be	important	about	the	indices	from	computeIndex?	



Introducing… Hash	Tables!
Closest	thing	to	our	“magic	array”



Hash	Tables:	closest	thing	to	our	“Magic	Array”
• Average	case		O(1)	find,	insert,	and	delete

(when	under	some	often-reasonable	assumptions)

• Our	computeIndex function	
is	called	a	

• The	index from	the	hash	function	
is	called	a

0

…

tableSize –1	

hash	function:
index	=	h(key)

Hash	Table

all	possible	keys



Hash	Tables:	Example	Illustration



Hash	Functions

Hash	functions	need	to…
•
•
•

For	a	person’s	name,	would	it	be	a	good	hash	function	to…
• Use	the	ASCII	values	of	first	and	second	letter?
• Use	the	number	of	letters	in	the	name?	



Example	Hash	Function

Hash	function	“djb2”:



Hash	Functions

• Many	datatypes	and	Objects	are	hashable

• When	writing	a	class,	can	make	it	hashable!

Do	so	by	implementing	hashCodemethod

• We’ll	focus	on	ints and	Strings	in	this	class.



Collisions

Happens	when	two	elements	get	the	same	index	(unavoidable	in	
practice)

Homework:	come	up	with	a	strategy,	write	it	down	on	paper,	and	bring	
it	to	class	on	Weds



Hash	Table	roles
When	hash	tables	are	a	reusable	library,	the	division	of	responsibility	
generally	breaks	down	into	two	roles:	

We	will	learn	both	roles,	but	most	programmers	“in	the	real	world”	
spend	more	time	as	clients	while	understanding	the	library	

E int table-index
collision? collision

resolution

client hash	table	library



Hash	Tables

• There	are	m possible	keys	(m typically	large,	even	infinite)	
• We	expect	our	table	to	have	only	n items	
• n is	much	less	than	m (often	written	n <<	m)

Many	dictionaries	have	this	property

• Compiler:	All	possible	identifiers	allowed	by	the	language	vs.	those	used	in	some	file	
of	one	program

• Database:	All	possible	student	names	vs.	students	enrolled

• AI:	All	possible	chess-board	configurations	vs.	those	considered	by	the	current	player
• …



Hash	Table	Size

• How	can	we	keep	hash	values	(i.e.	the	indices)	within	the	table	size?

_

• Table	size	usually	prime
• Real-life	data	tends	to	have	a	pattern
• "Multiples	of	61"		probably	less	likely	than	"multiples	of	60"
• Helpful	for	a	collision-handling	strategy	we'll	see	next	week



Review:	Hash	Tables	thus	far…

• The	hash	table	is	one	of	the	most	important	data	structures	–
Supports	only	find,	insert,	and	delete efficiently
• Have	to	search	entire	table	for	other	operations	

• Important	to	use	a	good	hash	function	
• Important	to	keep	hash	table	at	a	good	size	
• Side-comment:	hash	functions	have	uses	beyond	hash	tables	–
Examples:	Cryptography,	check-sums	
• Big	remaining	topic:	Handling	collision



Homework

Come	up	with	a	collision-resolution	strategy,	write	it	
down	on	paper,	and	bring	it	to	class	on	Wednesday

Goal:	prime	our	brains	for	learning	the	most	common	
collision-resolution	strategies.


