CSE 373: Data Structures and Algorithms

Lecture 5: Finishing up Asymptotic Analysis
Big-O, Big-Q), Big-6, little-o, little-w & Amortized Analysis

Instructor: Lilian de Greef
Quarter: Summer 2017



Today:

* Announcements

* Big-O and Cousins
* Big-Omega
* Big-Theta
e little-o
* little-omega
* Average running time:
Amortized Analysis



News about Sections

Updated times:
* 10:50—-11:50am
*12:00-1:00pm

Bigger room!

* 10:50am section now in
THO 101

Which section to attend:

* Last week, section sizes were
unbalanced (~40 vs ~10 people)

* If you can, | encourage you to choose
the 12:00 section to rebalance sizes
* Helps the 12:00 TA’s feel less
lonely
* More importantly: improves
TA:student ratio in sections (better
for tailoring section to your needs)



Homework 1

* Due today at 5:00pm!

* A note about grading methods:

* Before we grade, we’ll run a script on your code to replace your name with
### anonymized ### sowe won’t know who you are as we grade it

(to address unconscious bias).

* It’s still good practice to have your name and contact info in the
comments!



Homework 2

* Written homework about asymptotic analysis (no Java this time)

* Will be out this evening

* Due Thursday, July 61" at 5:00pm
* Because July 4t is a holiday

* A note for help on homework:

* Note that holidays means fewer office hours
* Remember: although you cannot share solutions, you can talk to classmates
about concepts or work through non-homework examples (e.g. from section)

together.
* Give these classmates credit, write their names at the top of your homework.



Formal Definition of Big-O

Definition: f(n) is in O( g(n) ) if there exist constants
and n, such that f(n) g(n) foralln>



More Practice with the Definition of Big-O

Let a(n) = 10n+3n? and b(n) = n?

What are some values of ¢ and
we can use to show a(n) =0(b(n))?

Definition: f(n) is in O( g(n) ) if there exist constants
and n, such that f(n) g(n) foralln>



Constants and Lower Order Terms

* The constant multiplier ¢ is what allows functions that differ only in their
largest coefficient to have the same asymptotic complexity

Example:
* Eliminate lower-order terms because

 Eliminate coefficients because
* 3n? vs 5n? is meaningless without the cost of constant-time operations
e Can always re-scale anyways
* Do not ignore constants that are not multipliers! n3is not O(n?), 3"is not O(2")



Analyzing “Worst-Case” Cheat Sheet

Basic operations take “some amount of” constant time
* Arithmetic (fixed-width)
* Assignment
* Access one Java field or array index
. etc.

(This is an approximation of reality: a very useful “lie”)

Control Flow Time Required

Consecutive statements Sum of time of statement
Conditionals Time of test plus slower branch
Loops Sum of iterations * time of body
Method calls Time of call’s body

Recursion Solve recurrence relation




Big-O & Big-Omega

Big-O: Big-Q:

f(n) isin O( g(n) ) if there exist f(n)isin Q ( g(n) ) if there exist
constants ¢ and n, such that constants ¢ and n, such that
f(n) c g(n)foralln=n, f(n)  cg(n)foralln=n,




Big-Theta

Big-0:
f(n)isin ©( g(n) ) if f(n) is in
both O(g(n)) and Q (g(n))




ittle-o & little-omega

little-o: little-w:

f(n)isino( g(n))if f(n)isin w( g(n) ) if

constants ¢ >0 there exists an n, constants ¢ >0 there exists an n,
s.t. f(n) c g(n)foralln=n, s.t. f(n) cg(n)forallnzn,

A




Practice Time!

Let f(n) = 75n%+ 2 and g(n) =n3+ 6n+ 2n?
Then f(n) is in... (choose all that apply)

A. Big-O(g)
B. Big-Q(g)
C. 6(g)

D. little-o(g)
E. little-w(g)



Second Practice Time!

Let f(n) = 3" and g(n) = n?
Then f(n) is in... (choose all that apply)

A. Big-O(g)
B. Big-Q(g)
C. 6(g)

D. little-o(g)
E. little-w(g)



Big-O, Big-Omega, Big-Theta

* Which one is more useful to describe asymptotic behavior?

* A common error is to say O( f(n) ) when you mean 6( f(n) )
* Alinear algorithm is in both O(n) and O(n5)
* Better to say it is O(n)
* That means that it is not, for example O(log n)



Comments on Asymptotic Analysis

* Is choosing the lowest Big-O or Big-Theta the best way to choose the
fastest algorithm?

* Big-O can use other variables (e.g. can sum all of the elements of an
n-by-m matrix in O(nm))



Amortized Analysis

How we calculate the average time!



Case Study: the Array Stack

What’s the worst-case running time of push () ?
What’s the average running time of push () ?

Calculating the average: not based off of running a single operation,
but running many operations in sequence.

Techniqgue: Amortized Analysis



Amortized Cost

The amortized cost of n operations is the worst-case total cost of the
operations divided by n.



Amortized Cost

The amortized cost of n operations is the worst-case total cost of the
operations divided by n.

Practice:

* n operations taking O(n) - amortized cost =

* n operations taking O(n°) - amortized cost =

* n operations taking O(n f(n)) = amortized cost =



Example: Array Stack

What’s the amortized cost of calling push () n times
if we double the array size when it’s full?

The amortized cost of n operations is the worst-
case total cost of the operations divided by n.



Another Perspective: Paying and Saving “Currency”

1 operation costs 1S to the computer

Use S2 for each push:
S1 to computer, $1 to bank

ANK | o
v Spend our savings in

the bank to resize.
That way it only costs
S1 extra to push(E)!

Potential Function




Example #2: Queue made of Stacks

A sneaky way to implement Queue using two Stacks

Example walk-through:
* enqueue A

* enqueue B

* enqueue C

* dequeue

* enqueue D

* enqueue E

* dequeue

* dequeue :
* dequeue IN out



Example #2: Queue made of Stacks

A sneaky way to implement Queue using two Stacks

Queue<E> {

Stack<E> in = Stack<E> () ;
Stack<E> out = Stack<E>() ;
volid enqueue(E x){ in.push(x);

E dequeue () {
(out.isEmpty()) {
(!'in.isEmpty())
out.push (in.pop())

out.pop();

{

}

L

Wouldn’t it be nice to have a queue of t-shirts to
wear instead of a stack (like in your dresser)?

So have two stacks

e in: stack of t-shirts go after you wash them

e out: stack of t-shirts to wear

* if outis empty, reverse in into out



Example #2: Queue made of Stacks (Analysis)

Queue<E> { Assume stack operations are (amortized) O(1).
Stack<E> in = Stack<E> () ; What'’s the worst-case for dequeue () ?
Stack<E> out = Stack<E> () ;
void enqueue (E x){ in.push(x); }

E dequeue () { What operations did we need to do to reach

(out.isEmpty()) { that condition (starting with an empty Queue)?

(!'in.isEmpty () ) {

out.push (in.pop())

} Hence, what is the amortized cost?
out.pop () ;

So the average time for dequeue () is:
in out



Example #2: Using “Currency” Analogy

“Spend” 2 coins for every enqueue — 1 to the “computer”, 1 to the “bank”.

Example walk-through:
* enqueue A

* enqueue B

* enqueue C

* enqueue D

* enqueue E

* dequeue

N OUt Potential Function



Example #3: (Parody / Joke Example)

Lectures are 1 hour long, 3 times per week, so I’'m supposed to
lecture for 27 hours this quarter.

If | end the first 26 lectures 5 minutes early, then I'd have
“saved up” 130 minutes worth of extra lecture time.

Then | could spend it all on the last lecture and can keep you
here for 3 hours (bwahahahaha)!

(After all, each lecture would still be 1 hour amortized time)



Wrapping up Amortized Analysis

* In what cases do we care more about the average / amortized run
time?

* In what cases do we care more about the worst-case run time?



