
Instructor:	Lilian	de	Greef
Quarter:	Summer	2017

CSE	373:	Data	Structures	and	Algorithms
Lecture	5:	Finishing	up	Asymptotic	Analysis

Big-O,	Big-Ω,	Big-θ,	little-o,	little-ω &			Amortized	Analysis



Today:

•Announcements
•Big-O	and	Cousins
• Big-Omega
• Big-Theta
• little-o	
• little-omega

•Average	running	time:	
Amortized	Analysis



News	about	Sections

Updated	times:	
• 10:50 – 11:50am
• 12:00	– 1:00pm

Bigger	room!
• 10:50am	section	now	in	
THO	101

Which	section	to	attend:
• Last	week,	section	sizes	were	
unbalanced	(~40	vs	~10	people)
• If	you	can,	I	encourage	you	to	choose	
the	12:00	section	to	rebalance	sizes
• Helps	the	12:00	TA’s	feel	less	
lonely
• More	importantly:	improves	
TA:student ratio	in	sections	(better	
for	tailoring	section	to	your	needs)



Homework	1

• Due	today	at	5:00pm!

• A	note	about	grading	methods:	
• Before	we	grade,	we’ll	run	a	script	on	your	code	to	replace	your	name	with	
### anonymized ### so	we	won’t	know	who	you	are	as	we	grade	it	
(to	address	unconscious	bias).

• It’s	still	good	practice	to	have	your	name	and	contact	info	in	the	
comments!



Homework	2

• Written	homework	about	asymptotic	analysis	(no	Java	this	time)
• Will	be	out	this	evening	
• Due	Thursday,	July	6th at	5:00pm
• Because	July	4th is	a	holiday

• A	note	for	help	on	homework:
• Note	that	holidays	means	fewer	office	hours
• Remember:	although	you	cannot	share	solutions,	you	can	talk	to	classmates	
about	concepts	or	work	through	non-homework	examples	(e.g.	from	section)	
together.
• Give	these	classmates	credit,	write	their	names	at	the	top	of	your	homework.



Formal	Definition	of	Big-O
Definition:	f(n)	is	in	O(	g(n)	) if	there	exist	constants	

c and	n0 such	that		f(n)	£ c g(n)	for	all	n ³ n0



More	Practice	with	the	Definition	of	Big-O

Definition:	f(n)	is	in	O(	g(n)	) if	there	exist	constants	
c and	n0 such	that		f(n)	£ c g(n)	for	all	n ³ n0

Let	a(n)	=	10n+3n2 and	b(n)	=	n2

What	are	some	values	of	c	and	n0
we	can	use	to	show	a(n)∈O(b(n))?	



Constants	and	Lower	Order	Terms

• The	constant	multiplier	c is	what	allows	functions	that	differ	only	in	their	
largest	coefficient	to	have	the	same	asymptotic	complexity
Example:

• Eliminate	lower-order	terms	because

• Eliminate	coefficients	because	
• 3n2		vs	5n2		is	meaningless	without	the	cost	of	constant-time	operations
• Can	always	re-scale	anyways
• Do	not	ignore	constants	that	are	not	multipliers!	n3	is	not	O(n2),	3n is	not	O(2n)



Analyzing	“Worst-Case”	Cheat	Sheet
Basic	operations	take	“some	amount	of”	constant	time

• Arithmetic	(fixed-width)
• Assignment
• Access	one	Java	field	or	array	index
• etc.

(This	is	an	approximation of	reality:	a	very	useful	“lie”)

Control Flow Time	Required
Consecutive	statements Sum	of	time	of	statement
Conditionals Time of	test	plus	slower	branch
Loops Sum of	iterations	*	time	of	body
Method	calls Time	of	call’s	body
Recursion Solve	recurrence	relation



Big-O & Big-Omega
Big-O:
f(n)	is	in	O(	g(n)	) if	there	exist	
constants	c and	n0 such	that	
f(n)	 c g(n)	for	all	n ³ n0

Big-Ω:
f(n)	is	in	Ω	(	g(n)	) if	there	exist	
constants	c and	n0 such	that	
f(n)	 c g(n)	for	all	n ³ n0



Big-Theta

Big-θ:
f(n)	is	in	θ(	g(n)	) if	f(n)	is	in	
both		O(g(n))		and Ω	(g(n))	



little-o	& little-omega
little-o:
f(n)	is	in	o(	g(n)	) if	
constants	c >0	there	exists	an	n0
s.t. f(n)	 c g(n)	for	all	n ³ n0

little-ω:
f(n)	is	in	ω(	g(n)	) if	
constants	c >0	there	exists	an	n0
s.t. f(n)	 c g(n)	for	all	n ³ n0



Practice	Time!

Let	f(n)	=	75n3 +	2		and		g(n)	=	n3 +	6n +	2n2
Then	f(n)	is	in… (choose	all	that	apply)

A. Big-O(g)
B. Big-Ω(g)
C. θ(g)
D. little-o(g)
E. little-ω(g)



Second	Practice	Time!

Let	f(n)	=	3n and		g(n)	=	n3
Then	f(n)	is	in… (choose	all	that	apply)

A. Big-O(g)
B. Big-Ω(g)
C. θ(g)
D. little-o(g)
E. little-ω(g)



Big-O,	Big-Omega,	Big-Theta

• Which	one	is	more	useful	to	describe	asymptotic	behavior?

• A	common	error	is	to	say	O(	f(n)	)	when	you	mean	θ(	f(n)	)
• A	linear	algorithm	is	in	both	O(n)	and	O(n5)
• Better	to	say	it	is	θ(n)
• That	means	that	it	is	not,	for	example	O(log	n)	



Comments	on	Asymptotic	Analysis

• Is	choosing	the	lowest	Big-O	or	Big-Theta	the	best	way	to	choose	the	
fastest	algorithm?

• Big-O	can	use	other	variables	(e.g.	can	sum	all	of	the	elements	of	an	
n-by-m	matrix	in	O(nm))



Amortized	Analysis
How	we	calculate	the	average	time!



Case	Study:	the	Array	Stack

What’s	the	worst-case running	time	of	push()?

What’s	the	average running	time	of	push()?

Calculating	the	average:	not	based	off	of	running	a	single	operation,	
but	running	many	operations	in	sequence.

Technique:	Amortized	Analysis



Amortized	Cost

The	amortized	cost	of	n operations	is	the	worst-case	total	cost	of	the	
operations	divided	by	n.



Amortized	Cost

The	amortized	cost	of	n operations	is	the	worst-case	total	cost	of	the	
operations	divided	by	n.

Practice:	
• n operations	taking	O(n)	→ amortized	cost	=

• n operations	taking	O(n3)	→ amortized	cost	=

• n operations	taking	O(n	f(n))	→ amortized	cost	=



Example:	Array	Stack

What’s	the	amortized	cost	of	calling	push() n times	
if	we	double	the	array	size	when	it’s	full?

The	amortized	cost	of	n operations	is	the	worst-
case	total	cost	of	the	operations	divided	by	n.



Use	$2	for	each	push:
$1	to	computer,	$1	to	bank

Another	Perspective:	Paying	and	Saving	“Currency”

Potential	Function

Spend	our	savings	in	
the	bank	to	resize.
That	way	it	only	costs	
$1	extra	to	push(E)!

1	operation	costs	1$	to	the	computer



Example	#2:	Queue	made	of	Stacks

in out

Example	walk-through:
• enqueue A
• enqueue B
• enqueue C
• dequeue
• enqueue D
• enqueue E
• dequeue
• dequeue
• dequeue

A	sneaky	way	to	implement	Queue	using	two	Stacks



Example	#2:	Queue	made	of	Stacks
A	sneaky	way	to	implement	Queue	using	two	Stacks

in out

class Queue<E> {
Stack<E> in = new Stack<E>();
Stack<E> out = new Stack<E>();
void enqueue(E x){ in.push(x); }
E dequeue(){

if(out.isEmpty()) {
while(!in.isEmpty()) {

out.push(in.pop());
}

}
return out.pop();

}
}

Wouldn’t	it	be	nice	to	have	a	queue	of	t-shirts	to	
wear	instead	of	a	stack	(like	in	your	dresser)?
So	have	two	stacks
• in:	stack	of	t-shirts	go	after	you	wash	them
• out:	stack	of	t-shirts	to	wear
• if	out is	empty,	reverse	in into	out



Example	#2:	Queue	made	of	Stacks	(Analysis)
class Queue<E> {
Stack<E> in = new Stack<E>();

Stack<E> out = new Stack<E>();
void enqueue(E x){ in.push(x); }

E dequeue(){

if(out.isEmpty()) {

while(!in.isEmpty()) {

out.push(in.pop());

}

}

return out.pop();

}

}

in out

Assume	stack	operations	are	(amortized)	O(1).
What’s	the	worst-case	for	dequeue()?

What	operations	did	we	need	to	do	to	reach	
that	condition	(starting	with	an	empty	Queue)?

Hence,	what	is	the	amortized	cost?

So	the	average	time	for	dequeue() is:



Example	#2:	Using	“Currency”	Analogy

in out

Example	walk-through:
• enqueue A
• enqueue B
• enqueue C
• enqueue D
• enqueue E
• dequeue

“Spend”	2	coins	for	every	enqueue – 1	to	the	“computer”,	1	to	the	“bank”.

Potential	Function



Example	#3:	(Parody	/	Joke	Example)

Lectures	are	1	hour	long,	3	times	per	week,	so	I’m	supposed	to	
lecture	for	27	hours	this	quarter.
If	I	end	the	first	26	lectures	5	minutes	early,	then	I’d	have	
“saved	up”	130	minutes	worth	of	extra	lecture	time.
Then	I	could	spend	it	all	on	the	last	lecture	and	can	keep	you	
here	for	3	hours	(bwahahahaha)!
(After	all,	each	lecture	would	still	be	1	hour	amortized	time)



Wrapping	up	Amortized	Analysis

• In	what	cases	do	we	care	more	about	the	average	/	amortized	run	
time?

• In	what	cases	do	we	care	more	about	the	worst-case	run	time?


