## CSE 373: Data Structures and Algorithms

Lecture 5: Finishing up Asymptotic Analysis

Big-O, Big- $\Omega$ , Big- $\theta$ , little-o, little- $\omega$  & Amortized Analysis

Instructor: Lilian de Greef

Quarter: Summer 2017

## Today:

- Announcements
- Big-O and Cousins
  - Big-Omega
  - Big-Theta
  - little-o
  - little-omega
- Average running time:
   Amortized Analysis

### **News about Sections**

#### Updated times:

- **10:50** 11:50am
- 12:00 **1:00**pm

#### Bigger room!

10:50am section now in
 THO 101

#### Which section to attend:

- Last week, section sizes were unbalanced (~40 vs ~10 people)
- If you can, I encourage you to choose the 12:00 section to rebalance sizes
  - Helps the 12:00 TA's feel less lonely
  - More importantly: improves
     TA:student ratio in sections (better for tailoring section to your needs)

### Homework 1

Due today at 5:00pm!

- A note about grading methods:
  - Before we grade, we'll run a script on your code to replace your name with ### anonymized ### so we won't know who you are as we grade it (to address unconscious bias).
  - It's still good practice to have your name and contact info in the comments!

### Homework 2

- Written homework about asymptotic analysis (no Java this time)
- Will be out this evening
- Due Thursday, July 6<sup>th</sup> at 5:00pm
  - Because July 4<sup>th</sup> is a holiday
- A note for help on homework:
  - Note that holidays means fewer office hours
  - Remember: although you cannot share solutions, you can talk to classmates about concepts or work through non-homework examples (e.g. from section) together.
  - Give these classmates credit, write their names at the top of your homework.

# Big-O: Formal Definition

(Finishing up from last time)

## Formal Definition of Big-O



## More Practice with the Definition of Big-O

Let  $a(n) = 10n+3n^2$  and  $b(n) = n^2$ 

C=50 No=10

What are some values of c and  $n_0$  we can use to show  $a(n) \subseteq O(b(n))$ ?

$$a_0$$
  
 $a_1)$ )?  $a_1(0) = (0(10) + 3(10)^2 = 400$   
 $a_1(0) = 50(10)^2 = 5000$ 

N°>0

 $uts = 10 n + 3n^{2} - 50n^{2}$  n > 10 n > 10

Definition: f(n) is in O(g(n)) if there exist constants c and  $n_0$  such that  $f(n) \le c$  g(n) for all  $n \ge n_0$ 

### Constants and Lower Order Terms

0 (160000 n2)

• The constant multiplier s what allows functions that differ only in their largest coefficient to have the same asymptotic complexity

Example:  $2n^2 \in O(n^2)$   $1600000n^2 + n + 3 \in O(n^2)$ 

• Eliminate lower-order terms because

they become neglig

- · Eliminate coefficients because we don't have "units of execution"
  - $3n^2$  vs  $5n^2$  is meaningless without the cost of constant-time operations
  - Can always re-scale anyways
  - Do not ignore constants that are not multipliers!  $n^{3}$  is not  $O(n^{2})$  is not  $O(2^{n})$

### Constants and Lower Order Terms

• The constant multiplier *c* is what allows functions that differ only in their largest coefficient to have the same asymptotic complexity

```
e.g. for g(n) = 3n^2 and h(n) = 9999n^2 + 9999n + 2 and f(n) = n^2, g(n) and h(n) are both in O(f(n))
```

## Analyzing "Worst-Case" Cheat Sheet

Basic operations take "some amount of" constant time

- Arithmetic (fixed-width)
- Assignment
- Access one Java field or array index
- etc.

(This is an approximation of reality: a very useful "lie")

| Control Flow           | Time Required                    |
|------------------------|----------------------------------|
| Consecutive statements | Sum of time of statement         |
| Conditionals           | Time of test plus slower branch  |
| Loops                  | Sum of iterations * time of body |
| Method calls           | Time of call's body              |
| Recursion              | Solve recurrence relation        |

# Cousins of Big-O

Big-O, Big-Omega, Big-Theta, little-o, little-omega

## Big-O & Big-Omega

### Big-O:

f(n) is in O(g(n)) if there exist constants c and  $n_0$  such that  $f(n) \leq c g(n)$  for all  $n \geq n_0$ 



# Big-Ω: Lower Bound

f(n) is in  $\Omega$  ( g(n) ) if there exist constants c and  $n_0$  such that  $f(n) \geq c g(n)$  for all  $n \geq n_0$ 



## Big-Theta

Big-O: Tight Bound

f(n) is in  $\Theta(g(n))$  if f(n) is in both O(g(n)) and  $\Omega(g(n))$ 

use two different e's

c, & c,



## little-o & little-omega



## Practice Time!

Let 
$$f(n) = 75n^3 + 2$$
 and  $g(n) = n^3 + 6n + 2n^2$   
Then  $f(n)$  is in... (choose all that apply)

- A. Big-O(g)
  - B. Big- $\Omega(g)$
  - C  $\theta(g)$ 
    - D. little-o(g)
    - E. little- $\omega(g)$

choose all that apply)
$$c=75 \qquad 75n^{3}+2 \leq 75(n^{3}+6n+2n^{2}) \leq n^{3}+1 \leq$$

$$\theta(g) = intersection  $\theta(g) \notin \mathcal{R}(g)$$$

### Second Practice Time!

$$f(n) = 4n^2$$

$$f(n) = (n^2)$$

$$f(n^2) \times$$

for h>h.

Let 
$$f(n) = 3^n$$
 and  $g(n) = n^3$ 

Then f(n) is in... (choose all that apply)

No value of c k n of  $f(n) \leq c \leq k$ 

B Big-
$$\Omega(g)$$

C. 
$$\theta(g)$$

## Big-O, Big-Omega, Big-Theta

 $f(n) = 4 n^{2}$   $O(n^{2})$   $O(n^{3})$ avior?  $O(2^{n})$ 

• Which one is more useful to describe asymptotic behavior?

3i5-Dismove specific

- A common error is to say O(f(n)) when you mean  $\theta(f(n))$ 
  - A linear algorithm is in both O(n) and O(n5) = O(n5)
  - Better to say it is  $\theta(n)$
  - That means that it is not, for example O(log n)

## Comments on Asymptotic Analysis

• Is choosing the lowest Big-O or Big-Theta the best way to choose the fastest algorithm?

Johnetines we care about is average la se

Big-O can use other variables (e.g. can sum all of the elements of an n-by-m matrix in O(nm))

# Amortized Analysis

How we calculate the average time!

## Case Study: the Array Stack

What's the worst-case running time of push ()?

$$\Theta(n)$$
  $G(n)$ 

What's the average running time of push ()?

Calculating the average: not based off of running a <u>single operation</u>, but running <u>many operations in sequence</u>.

Technique: Amortized Analysis

### **Amortized Cost**

The **amortized cost** of *n* operations is the worst-case total cost of the operations divided by *n*.

if 
$$t(n) = worst case$$
 upper bound  
for  $n = \# operation S$   
 $T(n)$   
Amortized  $cost = m$ 

### **Amortized Cost**

The **amortized cost** of n operations is the worst-case total cost of the operations divided by n.

#### Practice:

- *n* operations taking  $O(n) \rightarrow$  amortized cost =  $\frac{O(n)}{n} = O(1)$
- *n* operations taking  $O(n^3) \rightarrow$  amortized cost =  $O(n^3)$
- *n* operations taking  $O(n f(n)) \rightarrow$  amortized cost =  $O(n f(n)) \rightarrow O(n)$

## Example: Array Stack

What's the amortized cost of calling push () *n* times if we double the array size when it's full?

n operations

n pushes (a) 
$$O(1)$$
 each  $\rightarrow$  cost is  $n$ 
 $= cost \circ f$ 
 $= n + \frac{n}{2} + \frac{n}{4} + \frac{n}{8}$ 

(doubling aways then bound  $= 2n$ 

total  $cost = 3n$ 
 $= 3$  The amortized cost of  $n$  operations is the worst-case total cost of the operations divided by  $n$ .

### Another Perspective: Paying and Saving "Currency"





### Another Perspective: Paying and Saving "Currency"

