
Instructor:	Lilian	de	Greef
Quarter:	Summer	2017

CSE	373:	Data	Structures	and	Algorithms
Lecture	5:	Finishing	up	Asymptotic	Analysis

Big-O,	Big-Ω,	Big-θ,	little-o,	little-ω &			Amortized	Analysis



Today:

•Announcements
•Big-O	and	Cousins
• Big-Omega
• Big-Theta
• little-o	
• little-omega

•Average	running	time:	
Amortized	Analysis



News	about	Sections

Updated	times:	
• 10:50 – 11:50am
• 12:00	– 1:00pm

Bigger	room!
• 10:50am	section	now	in	
THO	101

Which	section	to	attend:
• Last	week,	section	sizes	were	
unbalanced	(~40	vs	~10	people)
• If	you	can,	I	encourage	you	to	choose	
the	12:00	section	to	rebalance	sizes
• Helps	the	12:00	TA’s	feel	less	
lonely
• More	importantly:	improves	
TA:student ratio	in	sections	(better	
for	tailoring	section	to	your	needs)



Homework	1

• Due	today	at	5:00pm!

• A	note	about	grading	methods:	
• Before	we	grade,	we’ll	run	a	script	on	your	code	to	replace	your	name	with	
### anonymized ### so	we	won’t	know	who	you	are	as	we	grade	it	
(to	address	unconscious	bias).

• It’s	still	good	practice	to	have	your	name	and	contact	info	in	the	
comments!



Homework	2

• Written	homework	about	asymptotic	analysis	(no	Java	this	time)
• Will	be	out	this	evening	
• Due	Thursday,	July	6th at	5:00pm
• Because	July	4th is	a	holiday

• A	note	for	help	on	homework:
• Note	that	holidays	means	fewer	office	hours
• Remember:	although	you	cannot	share	solutions,	you	can	talk	to	classmates	
about	concepts	or	work	through	non-homework	examples	(e.g.	from	section)	
together.
• Give	these	classmates	credit,	write	their	names	at	the	top	of	your	homework.



Big-O:	Formal	Definition
(Finishing	up	from	last	time)



Formal	Definition	of	Big-O
Definition:	f(n)	is	in	O(	g(n)	) if	there	exist	constants	

c and	n0 such	that		f(n)	£ c g(n)	for	all	n ³ n0



More	Practice	with	the	Definition	of	Big-O

Definition:	f(n)	is	in	O(	g(n)	) if	there	exist	constants	
c and	n0 such	that		f(n)	£ c g(n)	for	all	n ³ n0

Let	a(n)	=	10n+3n2 and	b(n)	=	n2

What	are	some	values	of	c	and	n0
we	can	use	to	show	a(n)∈O(b(n))?	



Constants	and	Lower	Order	Terms

• The	constant	multiplier	c is	what	allows	functions	that	differ	only	in	their	
largest	coefficient	to	have	the	same	asymptotic	complexity
Example:

• Eliminate	lower-order	terms	because

• Eliminate	coefficients	because	
• 3n2		vs	5n2		is	meaningless	without	the	cost	of	constant-time	operations
• Can	always	re-scale	anyways
• Do	not	ignore	constants	that	are	not	multipliers!	n3	is	not	O(n2),	3n is	not	O(2n)



Constants	and	Lower	Order	Terms

• The	constant	multiplier	c is	what	allows	functions	that	differ	only	in	
their	largest	coefficient	to	have	the	same	asymptotic	complexity
e.g.	for	g(n)	=	3n2 and	h(n)	=	9999n2+9999n+2	and	f(n)	=	n2,

g(n)	and	h(n)	are	both	in	O(f(n))



Analyzing	“Worst-Case”	Cheat	Sheet
Basic	operations	take	“some	amount	of”	constant	time

• Arithmetic	(fixed-width)
• Assignment
• Access	one	Java	field	or	array	index
• etc.

(This	is	an	approximation of	reality:	a	very	useful	“lie”)

Control Flow Time	Required
Consecutive	statements Sum	of	time	of	statement
Conditionals Time of	test	plus	slower	branch
Loops Sum of	iterations	*	time	of	body
Method	calls Time	of	call’s	body
Recursion Solve	recurrence	relation



Cousins	of	Big-O
Big-O,	Big-Omega,	Big-Theta,	little-o,	little-omega



Big-O	&	Big-Omega
Big-O:
f(n)	is	in	O(	g(n)	) if	there	exist	
constants	c and	n0 such	that	
f(n)	 c g(n)	for	all	n ³ n0

Big-Ω:
f(n)	is	in	Ω	(	g(n)	) if	there	exist	
constants	c and	n0 such	that	
f(n)	 c g(n)	for	all	n ³ n0



Big-Theta

Big-θ:
f(n)	is	in	θ(	g(n)	) if	f(n)	is	in	
both		O(g(n))		and Ω	(g(n))	



little-o	&	little-omega
little-o:
f(n)	is	in	o(	g(n)	) if	
constants	c >0	there	exists	an	n0
s.t. f(n)	 c g(n)	for	all	n ³ n0

little-ω:
f(n)	is	in	ω(	g(n)	) if	
constants	c >0	there	exists	an	n0
s.t. f(n)	 c g(n)	for	all	n ³ n0



Practice	Time!

Let	f(n)	=	75n3 +	2		and		g(n)	=	n3 +	6n +	2n2
Then	f(n)	is	in… (choose	all	that	apply)

A. Big-O(g)
B. Big-Ω(g)
C. θ(g)
D. little-o(g)
E. little-ω(g)



Second	Practice	Time!

Let	f(n)	=	3n and		g(n)	=	n3
Then	f(n)	is	in… (choose	all	that	apply)

A. Big-O(g)
B. Big-Ω(g)
C. θ(g)
D. little-o(g)
E. little-ω(g)



Big-O,	Big-Omega,	Big-Theta

• Which	one	is	more	useful	to	describe	asymptotic	behavior?

• A	common	error	is	to	say	O(	f(n)	)	when	you	mean	θ(	f(n)	)
• A	linear	algorithm	is	in	both	O(n)	and	O(n5)
• Better	to	say	it	is	θ(n)
• That	means	that	it	is	not,	for	example	O(log	n)	



Comments	on	Asymptotic	Analysis

• Is	choosing	the	lowest	Big-O	or	Big-Theta	the	best	way	to	choose	the	
fastest	algorithm?

• Big-O	can	use	other	variables	(e.g.	can	sum	all	of	the	elements	of	an	
n-by-m	matrix	in	O(nm))



Amortized	Analysis
How	we	calculate	the	average	time!



Case	Study:	the	Array	Stack

What’s	the	worst-case running	time	of	push()?

What’s	the	average running	time	of	push()?

Calculating	the	average:	not	based	off	of	running	a	single	operation,	
but	running	many	operations	in	sequence.

Technique:	Amortized	Analysis



Amortized	Cost

The	amortized	cost	of	n operations	is	the	worst-case	total	cost	of	the	
operations	divided	by	n.



Amortized	Cost

The	amortized	cost	of	n operations	is	the	worst-case	total	cost	of	the	
operations	divided	by	n.

Practice:	
• n operations	taking	O(n)	→ amortized	cost	=

• n operations	taking	O(n3)	→ amortized	cost	=

• n operations	taking	O(n	f(n))	→ amortized	cost	=



Example:	Array	Stack

What’s	the	amortized	cost	of	calling	push() n times	
if	we	double	the	array	size	when	it’s	full?

The	amortized	cost	of	n operations	is	the	worst-
case	total	cost	of	the	operations	divided	by	n.



1	operation	costs	us	
1$	to	the	computer

Another	Perspective:	Paying	and	Saving	“Currency”

1

A B C D

A B C D E

23456789



Use	$2	for	each	push:
$1	to	computer,	
$1	to	bank

0 01234

Another	Perspective:	Paying	and	Saving	“Currency”

1

Potential	Function

A B C D

A B C D E

23456789Spend	our	savings	in	
the	bank	to	resize.
That	way	it	only	costs	
$1	to	push(E)!


