CSE 373: Data Structures and Algorithms

Lecture 5: Finishing up Asymptotic Analysis
Big-O, Big-Q, Big-0, little-o, little-w & Amortized Analysis

Instructor: Lilian de Greef
Quarter: Summer 2017/

Today:

* Announcements

* Big-O and Cousins
* Big-Omega
* Big-Theta
e little-o
e little-omega
* Average running time:
Amortized Analysis

News about Sections

Updated times: Which section to attend:
e 10:50 — 11:50am * Last week, section sizes were
+ 12:00 — 1:00pm unbalanced (~40 vs ~10 people)

* If you can, | encourage you to choose
the 12:00 section to rebalance sizes

* Helps the 12:00 TA's feel less

Bigger room!
10-50 _ . lonely
:>0am section now In * More importantly: improves
THO 101 TA:student ratio in sections (better

for tailoring section to your needs)

Homework 1

* Due today at 5:00pm!

* A note about grading methods:

» Before we grade, we’ll run a script on your code to replace your name with
anonymized ### sowe won’t know who you are as we grade it
(to address unconscious bias).

* |t’s still good practice to have your name and contact info in the
comments!

Homework 2

* Written homework about asymptotic analysis (no Java this time)

* Will be out this evening
e Due Thursday, July 6t at 5:00pm

e Because July 4t is a holiday

* A note for help on homework:

* Note that holidays means fewer office hours
* Remember: although you cannot share solutions, you can talk to classmates
about concepts or work through non-homework examples (e.g. from section)

together.
* Give these classmates credit, write their names at the top of your homework.

Big-O: Formal Definition

Formal Definition of Big-O

Definition: f(n) isin O
c and n, suc

— JU—

n)) if there exist constants
at f(n) < cg(n) foralln2>

Ny

S~ [oalw

r \/CU\B

%

wm*’ﬁ‘/‘ — A
Let a(n) = 10n+3n? and b(n) = n? Lo £ T n 'ﬂ

C;gO nNe —

What are some values of c and n, .
we can use to show a(n)=0(b(n))? ()= (0(16)€3(ed” = koO j

— e LoD~ §0(t072 = S000

Ny DO . om@ @W‘ RS2

J

]
(On = V\ ?, 2 .
T Ze e s

Definition: f(n) is TStz) if there exist constants
— c and n, such that f(n) < cg(n) foralln=n,

Constants and Lower Order Terms

0 ((Moacw\z)
N

* The constant muItipIier what allows functions that differ only in their j/
largest coefficient to have the same asymptotic complexity

Example: z 2 () OO T a4 —+ _é O(7)
Int €0k) 156000005 n*2 L OG
— —_— ——]
* Eliminate lower-order terms because /tlz\ay e con—=- V‘Q/ﬁl\ S \L(g
A_S N > Co

+ Eliminate coefficients because vt downt hav< units o exe st
* 3n? vs 5n? is meaningless without the cost of constant-time operations
« Can always re-scale anyways
* Do not ignore constants that are not multipliers! f33s not O(r@@is not O@’)

Constants and Lower Order Terms

* The constant multiplier ¢ is what allows functions that differ only in
their largest coefficient to have the same asymptotic complexity
e.g. for g(n) = 3n? and h(n) =9999n2+9999n+2 and f(n) = n?,
g(n) and h(n) are both in O(f(n))

Analyzing “Worst-Case” Cheat Sheet

Basic operations take “some amount of” constant time
Arithmetic (fixed-width)

* Assignment

e Access one Java field or array index

* etc.

(This is an approximation of reality: a very useful “lie”)

Control Flow Time Required

Consecutive statements Sum of time of statement
Conditionals Time of test plus slower branch
Loops Sum of iterations * time of body
Method calls Time of call’s body

Recursion Solve recurrence relation

Cousins of Big-O

Big-O, Big-Omega, Big-Theta, little-o, little-omega

Big-O & Big—Omegj |
1B W

Big-O: UVW Bown Big-Q: L ool o

f(n) isin O(g(n)) if there exist f(n)isin Q (g(n)) if there exist

constants ¢ and n, such that constants ¢ and n, such that

f(n) é cg(n) foralln=n, f(n) = cg(n) foralln>n,

4 c §C”> 4 L (\/\3

e~

c@“)

Big-Theta

£
Big-6: 1 g\ Bowne
f(n) isin ©(g(n)) if f(n) isin
both O(g(n)) and Q (g(n)) - 3@
Vse. o O(«‘g((ot c's

(c\&cD

ittle-o & little-omega

little-0: S TRoN & Vypel L"\’\(\C\Iittle-o\): STee N & Lwer o
f(n)isino(g(n))i @ f(n)isin w(g(n))if G _@}_(_
constants.c >0 ther constants ¢ >0 there exists an n,
s.t. f(@n) foralln=n, s.t. f(n) > cg(n)foralln>n,

C

a

) - le ~o
L6 <™ a Big ™ O
O (n*) é v
O (\/\Sj /_[SLS /ﬂ
o (") y / R RS L VTN

© (Y\ éj

Practice Time! C = ey ke

Let f(n) = 75n°+ 2 and g(n) =n°+6n+ 2n?

Then f(n) isin... (choose all that o *:\”\»
=24 S el £ 45 (\/\3* (i *2n
Big-O(g) -

{ : _ Qe £l 2z ¢ o (~) wio,ooom(w\
Bug-Q(g) -

D. little-o(g)
E. little-w(g)

!(@\> = 4\,\1
O CV\“”w

Let f(n) = 3" and g(n) = n® > (wt) X
Then f(n) isin... (choose all that apply)
\rﬂL\t»—L av°c C £ oo [s/ ﬁ(v\\ < c%(b

Second Practice Time!

™ 6

A. Blg-O(g) “ b W 7w,
elg-Q(g) i (e —uu Ls v
C. (g) — €| YL s Vo
D. little-o(g) E
@Iittle-w(g) T8 Catle- o Ls A e

Big-O, Big-Omega, Big-Theta O (2

* Which one is more useful to describe asymptotic behavior? ($ [/Z V\> l

_

Lig- B 6 e 7(eo\ﬁc @(v\g

* A common error is to say O(f(n)) when you mean 6(f(n))
* Alinear algorithm is in both 9(/n) and O(n5)= ® (\/\gw
* Bettertosayiti
* That means that it is not, for example O(log n)

Comments on Asymptotic Analysis

* Is choosing the lowest Big-O or Big-Theta the best way to choose the

fastest algorithm? ~——~_
7\)@ | L oS LA S

* Big-O can use other variables (e.g. can sum all of the elements of an

@-b@w matrix in (m

Amortized Analysis

How we calculate the average time!

Case Study: the Array Stack

What's the worst-case running time of push () ?
What'’s the average running time of push () ?

00"

Calculating the average: not based off of running a single operation,
but running many operations in sequence.

_J

Technique: Amortized Analysis

Amortized Cost

The amortized cost of n operations is the worst-case total cost of the
operations divided by n.

LT = worst emse S er o &
(v VA= Ow’f(rﬁv\ S
T(V\B

Amortized Cost

The amortized cost of n operations is the worst-case total cost of the
operations divided by n.

Practice:

")
* n operations taking O(n) - amortized cost = l = O(D

N\

v/——

* n operations taking O(n°) > amortized cost= O (m”’»

—_——

+ 1 operations taking O(n f(r)) - amortized cost = (5 (<[(-)) O(6)

Example: Array Stack

What’s the amortized cost of calling push () n times
if we double the array size when it’s full?

N owo\‘hcémf
» v Ya\JgL\Q; @ U(\B Q——KCL\ — o gt s M

S—

co 5 o & N+ N,z “- n

- rﬁ§l‘e§\\/) — 2 0 g
[Mu\ek\\\w M‘KZ
RPN [L\\\ %VW\OOV\ - A

/tWL cost = SN A T h
: — — NThe amortized cc opeyations is the worst-

\ case total cost of the operations divided by n.

Another Perspective: Paying and Saving “Currency”

(7= 1 operation costs us
A B C D \/’\/T\F1$ to the computer
a\| ‘1)
.
A B C|D|E

Another Perspective: Paying and Saving “Currency”
7

7= Use S2 for each push:
//*};
+ 1 to computer,

p\ | -0 bank

A B|C|D

A| B | C| D|E
ANK | @ Spend our savings in

4 the bank to resize.
That way it only costs
——— S1to push(E)! B

Potential Function

