CSE 373: Data Structures and Algorithms

 Lecture 5: Finishing up Asymptotic AnalysisBig-O, Big- Ω, Big- θ, little-o, little- ω \& Amortized Analysis

Instructor: Lilian de Greef
Quarter: Summer 2017

Today:

- Announcements
- Big-O and Cousins
- Big-Omega
- Big-Theta
- little-o
- little-omega
- Average running time: Amortized Analysis

News about Sections

Updated times:

- 10:50-11:50am
-12:00-1:00pm

Bigger room!
-10:50am section now in THO 101

Which section to attend:

- Last week, section sizes were unbalanced (~ 40 vs ~10 people)
- If you can, I encourage you to choose the 12:00 section to rebalance sizes
- Helps the 12:00 TA's feel less lonely
- More importantly: improves TA:student ratio in sections (better for tailoring section to your needs)

Homework 1

- Due today at 5:00pm!
- A note about grading methods:
- Before we grade, we'll run a script on your code to replace your name with \#\#\# anonymized \#\#\# so we won't know who you are as we grade it (to address unconscious bias).
- It's still good practice to have your name and contact info in the comments!

Homework 2

- Written homework about asymptotic analysis (no Java this time)
- Will be out this evening
- Due Thursday, July $6^{\text {th }}$ at $5: 00 \mathrm{pm}$
- Because July $4^{\text {th }}$ is a holiday
- A note for help on homework:
- Note that holidays means fewer office hours
- Remember: although you cannot share solutions, you can talk to classmates about concepts or work through non-homework examples (e.g. from section) together.
- Give these classmates credit, write their names at the top of your homework.

Big-O: Formal Definition
(Finishing up from last time)

Formal Definition of Big-O
Definition: $\mathrm{f}(n)$ is in $\mathrm{O}(\mathrm{g}(n))$ if there exist constants c and n_{0} such that $f(n) \leq c g(n)$ for all $n \geq n_{0}$

$$
\frac{0_{n \rightarrow 0}(n)}{-\frac{1(n) 2}{n}}
$$

More Practice with the Definition of Big-O

$$
\begin{aligned}
& c=50 \\
& 10 n+3 n^{2} \leq 50 n^{2}
\end{aligned}
$$

Let $\mathrm{a}(n)=10 n+3 n^{2}$ and $\mathrm{b}(n)=n^{2}$
What are some values of c and n_{0}

$$
c=50 \quad n_{0}=10
$$ we can use to show $\mathrm{a}(\mathrm{n}) \in \mathrm{O}(\mathrm{b}(\mathrm{n}))$?

$$
\begin{aligned}
& a(10)=10(10)+3(10)^{2}=400 \\
& c b(10)=50(10)^{2}=5000{ }^{9} \\
& n_{0}>0 \\
& c \text { and } n_{0} \text { such that } \mathrm{f}(n) \leq \mathrm{g}(n) \text { for all } n \geq n_{0}
\end{aligned}
$$

Constants and Lower Order Terms

- The constant multipliercis what allows functions that differ only in their largest coefficient to have the same asymptotic complexity

Example:

$$
2 n^{2} \in O\left(n^{2}\right) \quad \underline{1000000} n^{2}+\underbrace{n+3} \in O\left(n^{2}\right)
$$

- Eliminate lower-order terms because they become negligible

$$
\text { as } n \rightarrow \infty
$$

- Eliminate coefficients because we don't have "units of execution"
- $3 n^{2}$ vs $5 n^{2}$ is meaningless without the cost of constant-time operations
- Can always re-scale anyways
- Do not ignore constants that are not multipliers! $\sqrt{3}^{3}$ is not $O\left(n^{2}\right),(3)$ is not $O\left(2^{n}\right)$

Constants and Lower Order Terms

- The constant multiplier c is what allows functions that differ only in their largest coefficient to have the same asymptotic complexity
e.g. for $g(n)=3 n^{2}$ and $h(n)=9999 n^{2}+9999 n+2$ and $f(n)=n^{2}$,
$g(n)$ and $h(n)$ are both in $O(f(n))$

Analyzing "Worst-Case" Cheat Sheet

Basic operations take "some amount of" constant time

- Arithmetic (fixed-width)
- Assignment
- Access one Java field or array index
- etc.
(This is an approximation of reality: a very useful "lie")

Control Flow	Time Required
Consecutive statements	Sum of time of statement
Conditionals	Time of test plus slower branch
Loops	Sum of iterations * time of body
Method calls	Time of call's body
Recursion	Solve recurrence relation

Cousins of Big-O

Big-O, Big-Omega, Big-Theta, little-o, little-omega

Big-O \& Big-Omega

Big-O: Upper Bound
$\mathrm{f}(n)$ is in $\mathrm{O}(\mathrm{g}(n))$ if there exist constants c and n_{0} such that
$\mathrm{f}(n) \leq \mathrm{cg}(n)$ for all $n \geq n_{0}$

Big- Ω : Lower Bound
$\mathrm{f}(n)$ is in $\Omega(\mathrm{g}(n))$ if there exist constants c and n_{0} such that $\mathrm{f}(n) \geq c \mathrm{~g}(n)$ for all $n \geq n_{0}$

Big-Theta

Big-日: Tight Bound
$f(n)$ is in $\theta(g(n))$ if $f(n)$ is in both $\mathrm{O}(\mathrm{g}(n))$ and $\Omega(\mathrm{g}(n))$
use two different e's

$$
\left(c_{1} \& c_{2}\right)
$$

little-o \& little-omega
little-o: STRONG upper bound
little-w: STRONG lower bound $f(n)$ is in o $g(n)$) if $f(n)$ is in $\omega(g(n))$ if for all constants $c>0$ there exists an mo constants $c>0$ there exists an n_{0} s.t. $f(n)<c g(n)$ for all $n \geq n_{0}$ st. $\mathrm{f}(n)>c \mathrm{~g}(n)$ for all $n \geq n_{0}$

Practice Time!

$$
\begin{aligned}
& n_{0}=\text { integer }>0 \\
& c=\text { any rational } \# \\
& >0
\end{aligned}
$$

Let $f(n)=75 n^{3}+2$ and $g(n)=n^{3}+6 n+2 n^{2}$
Then $f(n)$ is in... (choose all that apply)
A. $\mathrm{Big}-\mathrm{O}(\mathrm{g})$
B. $\mathrm{Big}-\Omega(\mathrm{g})$

$$
\begin{aligned}
& c=75 \quad 25 n^{3}+2 \leq 75\left(n^{3}+6 n+2 n^{2}\right) e^{n} n_{0}=1 \\
& -\exists c_{f_{0}<c} \quad f(n) \geq c g(n) \quad 75 n^{3}+2 \geq 0.00001(m)
\end{aligned}
$$

C. $\theta(\mathrm{g})$
D. little-o(g)
E. little- ω (g)

Second Practice Time!

$$
O\left(n^{2}\right)
$$

Let $\mathrm{f}(n)=3^{\mathrm{n}}$ and $\mathrm{g}(n)=n^{3}$

$$
o\left(n^{2}\right)
$$

Then $f(n)$ is in... (choose all that apply)
A. $\mathrm{Big}-\mathrm{O}(\mathrm{g})$

$$
f(n)=4 n^{2}
$$

B. $B i g-\Omega(\mathrm{g})$
C. $\theta(\mathrm{g})$
D. little-o(g)

If little - w is true
\rightarrow Big Ω is true
(E.) little-w(g)

If little-o istme \rightarrow Bis- 0

Big-O, Big-Omega, Big-Theta

$$
f(n)=4 n^{2}
$$

Big-O, Big Omega, Big Theta

$$
O\left(n^{2}\right)
$$

- Which one is more useful to describe asymptotic behavior?

$$
\text { Bis- } \theta \text { is move specific }
$$

- A common error is to say $O(f(n))$ when you mean $\theta(f(n))$
- A linear algorithm is in both $O(\mathrm{n})$ and $O(n 5)<$
- Better to say it is $\theta(n)$
- That means that it is not, for example $O(\log n)$

Comments on Asymptotic Analysis

- Is choosing the lowest Big-O or Big-Theta the best way to choose the fastest algorithm?

Sometimes we cave above is average case

- Big-O can use other variables (e.g. can sum all of the elements of an Q-by-m matrix in $\underbrace{(\mathrm{nm})}$

Amortized Analysis

How we calculate the average time!

Case Study: the Array Stack

What's the worst-case running time of push () ?

What's the average running time of push () ?

Calculating the average: not based off of running a single operation, but running many operations in sequence.
Technique: Amortized Analysis

Amortized Cost

The amortized cost of n operations is the worst-case total cost of the operations divided by n.

$$
\begin{aligned}
& \text { if } T(n)=\text { worst case / upper bound } \\
& \text { for } n= \pm \text { operation } S \\
& \Rightarrow \text { Amortized cost }=\frac{T(n)}{n}
\end{aligned}
$$

Amortized Cost

The amortized cost of n operations is the worst-case total cost of the operations divided by n.

Practice:

- n operations taking $O(n) \rightarrow$ amortized cost $=\frac{O(n)}{n}=O(1)$
- n operations taking $O\left(n^{3}\right) \rightarrow$ amortized cost $=0\left(n^{2}\right)$
- n operations taking $O(n f(n)) \rightarrow$ amortized cost $=O(\nsim f(n))$

Example: Array Stack

What's the amortized cost of calling push () n times if we double the array size when it's full?
n operations

$$
\begin{aligned}
& \text { - } n \text { pushes } a(1) \text { each } \rightarrow \text { cost is } n \\
& =\underset{\text { coition of }}{\text { closing aras }}=n+\frac{n}{2}+\frac{n}{4}+\frac{n}{8} \cdots . \\
& \begin{array}{c}
\text { (doubling array } \\
\text { then }
\end{array} \text { fin) } \Rightarrow v_{\text {upper bound }}=2 n \\
& \text { total cost }=3 n \\
& \begin{array}{l}
\text { Tola cost }=3 n \\
\text { amortize\& cost }=\frac{3 n}{n}=3 \text { the amortized cost of } n \text { operations is the worst- } \\
\text { case total cost of the operations divided by } n \text {. }
\end{array}
\end{aligned}
$$

Another Perspective: Paying and Saving "Currency"

9

Another Perspective: Paying and Saving "Currency"

