CSE 373: Data Structures and Algorithms

Lecture 5: Finishing up Asymptotic Analysis
Big-O, Big-Q, Big-0, little-o, little-w & Amortized Analysis

Instructor: Lilian de Greef
Quarter: Summer 2017/



Today:

* Announcements

* Big-O and Cousins
* Big-Omega
* Big-Theta
e little-o
e little-omega
* Average running time:
Amortized Analysis



News about Sections

Updated times: Which section to attend:
e 10:50 — 11:50am * Last week, section sizes were
+ 12:00 — 1:00pm unbalanced (~40 vs ~10 people)

* If you can, | encourage you to choose
the 12:00 section to rebalance sizes

* Helps the 12:00 TA's feel less

Bigger room!
10-50 _ . lonely
:>0am section now In * More importantly: improves
THO 101 TA:student ratio in sections (better

for tailoring section to your needs)



Homework 1

* Due today at 5:00pm!

* A note about grading methods:

» Before we grade, we’ll run a script on your code to replace your name with
### anonymized ### sowe won’t know who you are as we grade it
(to address unconscious bias).

* |t’s still good practice to have your name and contact info in the
comments!



Homework 2

* Written homework about asymptotic analysis (no Java this time)

* Will be out this evening
e Due Thursday, July 6t at 5:00pm

e Because July 4t is a holiday

* A note for help on homework:

* Note that holidays means fewer office hours
* Remember: although you cannot share solutions, you can talk to classmates
about concepts or work through non-homework examples (e.g. from section)

together.
* Give these classmates credit, write their names at the top of your homework.



Big-O: Formal Definition



Formal Definition of Big-O
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Constants and Lower Order Terms

0 ((Moacw\z)
N

* The constant muItipIier what allows functions that differ only in their j/
largest coefficient to have the same asymptotic complexity

Example: z 2 () OO T a4 —+ _é O( 7)
Int €0k) 156000005 n*2 L OG
— —_— —— ]
* Eliminate lower-order terms because /tlz\ay e con—=- V‘Q/ﬁl\ S \L(g
A_S N > Co

+ Eliminate coefficients because vt downt hav< units o exe st
* 3n? vs 5n? is meaningless without the cost of constant-time operations
« Can always re-scale anyways
* Do not ignore constants that are not multipliers! f33s not O(r@@is not O@’)




Constants and Lower Order Terms

* The constant multiplier ¢ is what allows functions that differ only in
their largest coefficient to have the same asymptotic complexity
e.g. for g(n) = 3n? and h(n) =9999n2+9999n+2 and f(n) = n?,
g(n) and h(n) are both in O(f(n))



Analyzing “Worst-Case” Cheat Sheet

Basic operations take “some amount of” constant time
Arithmetic (fixed-width)

* Assignment

e Access one Java field or array index

* etc.

(This is an approximation of reality: a very useful “lie”)

Control Flow Time Required

Consecutive statements Sum of time of statement
Conditionals Time of test plus slower branch
Loops Sum of iterations * time of body
Method calls Time of call’s body

Recursion Solve recurrence relation




Cousins of Big-O

Big-O, Big-Omega, Big-Theta, little-o, little-omega



Big-O & Big—Omegj |
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ittle-o & little-omega
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Practice Time! C = ey ke

Let f(n) = 75n°+ 2 and g(n) =n°+6n+ 2n?

Then f(n) isin... (choose all that o *:\”\»
=24 S el £ 45 (\/\3* (i *2n
Big-O(g) -

{ : _ Qe £l 2z ¢ o (~) wio,ooom(w\
Bug-Q(g) -

D. little-o(g)
E. little-w(g)
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Let f(n) = 3" and g(n) = n® > (wt) X
Then f(n) isin... (choose all that apply)
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Second Practice Time!
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Big-O, Big-Omega, Big-Theta O (2

* Which one is more useful to describe asymptotic behavior? ( $ [/Z V\> l

_

Lig- B 6 e 7(eo\ﬁc @(v\g

* A common error is to say O( f(n) ) when you mean 6( f(n) )
* Alinear algorithm is in both 9(/n) and O(n5)= ® (\/\gw
* Bettertosayiti
* That means that it is not, for example O(log n)




Comments on Asymptotic Analysis

* Is choosing the lowest Big-O or Big-Theta the best way to choose the

fastest algorithm?  ~——~_
7\)@ | L oS LA S

* Big-O can use other variables (e.g. can sum all of the elements of an

@-b@w matrix in (m



Amortized Analysis

How we calculate the average time!



Case Study: the Array Stack

What's the worst-case running time of push () ?
What'’s the average running time of push () ?

00"

Calculating the average: not based off of running a single operation,
but running many operations in sequence.

_J

Technique: Amortized Analysis



Amortized Cost

The amortized cost of n operations is the worst-case total cost of the
operations divided by n.

LT = worst emse S er o &
(v VA= Ow’f(rﬁv\ S
T(V\B




Amortized Cost

The amortized cost of n operations is the worst-case total cost of the
operations divided by n.

Practice:

")
* n operations taking O(n) - amortized cost = l = O(D

N\

v/——

* n operations taking O(n°) > amortized cost= O (m”’»
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+ 1 operations taking O(n f(r)) - amortized cost = (5 (<[ (-)) O(6)




Example: Array Stack

What’s the amortized cost of calling push () n times
if we double the array size when it’s full?
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Another Perspective: Paying and Saving “Currency”

(7= 1 operation costs us
A B C D \/’\/T\F1$ to the computer
a\| ‘1)
.
A B  C|D|E




Another Perspective: Paying and Saving “Currency”
7

7= Use S2 for each push:
//*};
+ 1 to computer,

p\ | -0 bank

A B|C|D

A| B | C|  D|E
ANK | @ Spend our savings in

4 the bank to resize.
That way it only costs
——— S1to push(E)! B

Potential Function




