CSE 373: Data Structures and Algorithms

Lecture 4: Asymptotic Analysis part 3 Code Style, Recurrence Relations, Formal Big-O & Cousins

> Instructor: Lilian de Greef Quarter: Summer 2017

Code Style

Why does code style matter?

Code Style

<u>Do</u> <u>Don't</u>

Code Style Critique

```
import java.util.Arrays;
public boolean function(int n) {
    boolean[] p = new boolean[10000];
    Arrays.fill(p,true);
    p[0]=p[1]=false;
    for (int i=2;i<p.length;i++) {
        if(p[i]) {
            for (int j=2;i*j<p.length;j++) {
                p[i*j]=false;
            }
        }
    }
    return p[n];
}</pre>
```

// Tells you whether a number is prime. public boolean isPrime(int n) { // Make an array. boolean[] primes = new boolean[10000]; // Fill the array with the value "true" // except for the first two indices. Arrays.fill(primes, true); primes[0]=primes[1]=false; // Loop over the array. As you do, check // if the current array value is true. // If it is, loop over the rest of the array // in increments of that current value // and set those indices to "false". for (int i=2;i<primes.length;i++) {</pre> if (primes[i]) { for (int j=2;i*j<primes.length;j++) {</pre> primes[i*j]=false; } } return primes[n]; }

Code Style Critique #2

```
// Returns whether a given number is prime.
// Assumes number is less than 10000.
public boolean isPrime(int n) {
    // Assume all numbers are prime.
    boolean[] primes = new boolean[10000];
    Arrays.fill(primes, true);
    // We know 0 and 1 are not prime.
    primes[0] = false;
    primes[1] = false;
    // Eliminate numbers that are not prime
    // using the Sieve of Eratosthenes.
    for (int i=2; i<primes.length; i++) {</pre>
        // If the current number is prime, flag
        // all of its multiples as not prime.
        if (primes[i]) {
            for (int j=2; i*j<primes.length; j++) {</pre>
                primes[i*j] = false;
            }
        }
    }
    return primes[n];
}
```

Code Style Critique #3

```
// Constants and data members
static final int MAX_PRIME = 10000;
private boolean[] primes = new boolean[MAX_PRIME];
// An implementation of the Sieve of Eratosthenes.
// Fills our array of primes with "true" or "false"
// to match whether the index is prime.
public void fillSieve() {
    // Assume all numbers are prime.
    Arrays.fill(primes,true);
    // We know 0 and 1 are not prime.
    primes[0] = false;
    primes[1] = false;
    // Eliminate numbers that are not prime.
    for (int i=2; i<primes.length; i++) {</pre>
        // If the current number is prime, flag
        // all of its multiples as not prime.
        if (primes[i]) {
            for (int j=2; i*j<primes.length; j++) {</pre>
                primes[i*j] = false;
        }
    }
}
// Returns whether a given number is prime.
// Assumes number is less than the class's maximum.
public boolean isPrime(int n) {
    return primes[n];
```

Code Style Critique #4

Recurrence Relations

How to calculate Big-O for recursive functions! (Continued from last lecture)

Example #1: Towers of Hanoi

Example #1: Towers of Hanoi

Base Case:

Recurrence Relation:

(Example #1 continued)

(Example #1 continued)

Example #2: Binary Search

2	3	5	16	37	50	73	75	126
---	---	---	----	----	----	----	----	-----

Find an integer in a *sorted* array

```
(Can also be done non-recursively)
```

What is the recurrence relation?

A.
$$2T(n-1) + 3$$

C.
$$T(n/2) + 3$$

B.
$$T(n-1)*T(n-1) + 3$$

D.
$$T(n/2) * T(n/2) + 3$$

Base Case:

Recurrence Relation:

(Example #2 continued)

(Example #2 continued)

Recap: Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?

```
• T(n) = 3 + T(n/2) T(1) = 3
```

2. "Expand" the original relation to find an equivalent general expression in terms of the number of expansions.

```
• T(n) = 3 + 3 + T(n/4)
= 3 + 3 + 3 + T(n/8)
= ...
= 3k + T(n/(2^k))
```

- 3. Find a closed-form expression by setting the number of expansions to a value which reduces the problem to a base case
 - $n/(2^k) = 1 \text{ means } n = 2^k \text{ means } k = \log_2 n$
 - So $T(n) = 10 \log_2 n + 8$ (get to base case and do it)
 - So T(n) is $O(\log n)$

Common Recurrence Relations

Should know how to solve recurrences but helps to recognize some common ones:

$$T(n) = O(1) + T(n-1)$$

 $T(n) = O(1) + 2T(n/2)$
 $T(n) = O(1) + T(n/2)$
 $T(n) = O(1) + 2T(n-1)$
 $T(n) = O(n) + T(n-1)$
 $T(n) = O(n) + T(n/2)$
 $T(n) = O(n) + 2T(n/2)$

linear
linear
logarithmic
$$O(\log n)$$
exponential
quadratic
linear (why?)
 $O(n \log n)$

Big-O Big Picture

with its formal definition

In terms of Big-O, which function has the faster asymptotic running time?

In terms of Big-O, which function has the faster asymptotic running time?

In terms of Big-O, which function has the faster asymptotic running time?

Take-away:

Formal Definition of Big-O

"General Idea" explanation from last week:

Mathematical upper bound describing the behavior of how long a function takes to run in terms of N. (The "shape" as $N \rightarrow \infty$)

Formal definition of Big-O:

Formal Definition of Big-O

Using the Formal Definition of Big-O

```
Definition: f(n) is in O(g(n)) if there exist constants c and n_0 such that f(n) \le c g(n) for all n \ge n_0
```

To show f(n) is in O(g(n)), pick a c large enough to "cover the constant factors" and n_0 large enough to "cover the lower-order terms"

Example:

Let
$$f(n) = 3n^2 + 18$$
 and $g(n) = n^2$

Example:

Let $f(n) = 3n^2 + 18$ and $g(n) = n^5$

Practice with the Definition of Big-O

Let f(n) = 1000n and $g(n) = n^2$

What are some values of c and n_0 we can use to show $f(n) \subseteq O(g(n))$?

Definition: f(n) is in O(g(n)) if there exist constants c and n_0 such that $f(n) \le c g(n)$ for all $n \ge n_0$

More Practice with the Definition of Big-O

Let
$$a(n) = 10n+3n^2$$
 and $b(n) = n^2$

What are some values of c and n_0 we can use to show $a(n) \subseteq O(b(n))$?

Definition: f(n) is in O(g(n)) if there exist constants c and n_0 such that $f(n) \le c g(n)$ for all $n \ge n_0$

Constants and Lower Order Terms

- The constant multiplier c is what allows functions that differ only in their largest coefficient to have the same asymptotic complexity
 Example:
- Eliminate lower-order terms because
- Eliminate coefficients because
 - $3n^2$ vs $5n^2$ is meaningless without the cost of constant-time operations
 - Can always re-scale anyways
 - Do not ignore constants that are not multipliers! n^3 is not $O(n^2)$, 3^n is not $O(2^n)$

Cousins of Big-O

Big-O, Big-Omega, Big-Theta, little-o, little-omega

Big-O & Big-Omega

Big-O:

f(n) is in O(g(n)) if there exist constants c and n_0 such that f(n) c g(n) for all $n \ge n_0$

Big-Ω:

f(n) is in Ω (g(n)) if there exist constants c and n_0 such that f(n) c g(n) for all $n \ge n_0$

Big-Theta

Big- θ:

f(n) is in $\Theta(g(n))$ if f(n) is in both O(g(n)) and $\Omega(g(n))$

little-o & little-omega

little-o:

```
f(n) is in o(g(n)) if constants c > 0 there exists an n_0 s.t. f(n) c g(n) for all n \ge n_0
```

<u>little-ω:</u>

```
f(n) is in \omega(g(n)) if
constants c > 0 there exists an n_0
s.t. f(n) c g(n) for all n \ge n_0
```

Big-O, Big-Omega, Big-Theta

Which one is more useful to describe asymptotic behavior?

- A common error is to say O(f(n)) when you mean $\theta(f(n))$
 - A linear algorithm is in both O(n) and O(n5)
 - Better to say it is $\theta(n)$
 - That means that it is not, for example $O(\log n)$

Notes on Worst-Case Analysis

Analyzing "Worst-Case" Cheat Sheet

Basic operations take "some amount of" constant time

- Arithmetic (fixed-width)
- Assignment
- Access one Java field or array index
- etc.

(This is an approximation of reality: a very useful "lie")

Control Flow	Time Required			
Consecutive statements	Sum of time of statement			
Conditionals	Time of test plus slower branch			
Loops	Sum of iterations * time of body			
Method calls	Time of call's body			
Recursion	Solve recurrence relation			

Comments on Asymptotic Analysis

• Is choosing the lowest Big-O or Big-Theta the best way to choose the fastest algorithm?

• Big-O can use other variables (e.g. can sum all of the elements of an n-by-m matrix in O(nm))