CSE 373: Data Structures and Algorithms

Lecture 4: Asymptotic Analysis part 3
Code Style, Recurrence Relations, Formal Big-O & Cousins

Instructor: Lilian de Greef
Quarter: Summer 2017

Code Style

Why does code style matter?

Code Style

Do Don’t

Code Style Critique

import java.util.Arrays;
public boolean function(int n) {
boolean[] p = new boolean[100001];
Arrays.fill(p,true);
p[@]=pll1]=false;
for (int 1i=2;i<p.length;i++) {
if(plil) {
for (int j=2;ixj<p.length;j++) {
plixjl=false;
¥
}
¥

return plnl;

// Tells you whether a number is prime. COde Style Crlthue #2

public boolean isPrime(int n) {
// Make an array.
boolean[] primes = new boolean[100001];
// Fill the array with the value "true"
// except for the first two indices.
Arrays.fill(primes, true);
primes[@]=primes[1]=false;

// Loop over the array. As you do, check
// if the current array value is true.
// If it is, loop over the rest of the array
// in increments of that current value
// and set those indices to "false".
for (int i=2;i<primes.length;i++) {
if (primes[il) {
for (int j=2;ixj<primes.length;j++) {
primes[ixjl=false;
¥

}

return primes[nl;

// Returns whether a given number is prime. COde Style Crlthue #3

// Assumes number is less than 10000.
public boolean isPrime(int n) {

// Assume all numbers are prime.
boolean[] primes = new boolean[100001];
Arrays.fill(primes, true);

// We know @ and 1 are not prime.
primes[9] false;
primes[1] false;

// Eliminate numbers that are not prime
// using the Sieve of Eratosthenes.
for (int i=2; i<primes.length; i++) {

// If the current number is prime, flag
// all of its multiples as not prime.
if (primes[i]) {
for (int j=2; ixj<primes.length; j++) {
primes[ixj] = false;

}
¥

return primes[nl;

// Constants and data members
static final int MAX_PRIME = 10000;
private boolean[] primes = new boolean[MAX_PRIME];

// An implementation of the Sieve of Eratosthenes.
// Fills our array of primes with "true" or "false"
// to match whether the index is prime.

public void fillSieve() {

// Assume all numbers are prime.
Arrays.fill(primes,true);

// We know @ and 1 are not prime.
primes[0] = false;

primes[1] = false;
// Eliminate numbers that are not prime.
for (int i=2; i<primes.length; i++) {

// If the current number is prime, flag
// all of its multiples as not prime.
if (primes[il) {
for (int j=2; ixj<primes.length; j++) {
primes[ixj] = false;
}

}

// Returns whether a given number is prime.
// Assumes number is less than the class's maximum.
public boolean isPrime(int n) {
return primes[n]l;
}

Code Style Critique #4

Recurrence Relations

How to calculate Big-O for recursive functions!

(Continued from last lecture)

Example #1: Towers of Hanoi

// Prints instructions for moving disks from one
// pole to another, where the three poles are
// labeled with integers "from", "to", and "other".
// Code from rosettacode.org
public void move(int n, int from, int to, int other) {
1t (n = 1) {
System.out.println ("Move disk from pole " + from +
" to pole " + to);}
else {
move(n - 1, from, other, to);
move (1, from, to, other);
move(n - 1, other, to, from);

Example #1: Towers of Hanoi

(n == 1) {
System.out.println ("Move disk from pole " + from +
" to pole " + to);}
{
move(n - 1, from, other, to);

move (1, from, to, other);
move (n - 1, other, to, from);

Base Case:
Recurrence Relation:

(Example #1 continued)

(Example #1 continued)

Example #2: Binary Search

2 3 5 16 | 37 | 50 | 73 75 | 126

Find an integer in a sorted array

(Can also be done non-recursively)

// Requires the array to be sorted.

// Returns whether k is in array.

public boolean find(int[larr, 1int k) {
help(arr,k,0,arr.length);

private boolean help(int[]arr, int k, 1nt lo, 1nt hi) {
mid = (hi+lo)/2; // i.e., lo+(hi-1o)/2
(lo==h1i) false;
(arr [mid]==k) true;
(arr[mid]< k) help(arr, k,mid+1,h1i);

help (arr,k,lo,mid) ;

What is the recurrence relation?

public boolean find(int[]arr, 1int k) {
help (arr, k,0,arr.length);

}
int k, int lo, int hi)

private boolean help(int[]arr,
mid = (hi+lo) /2;
(lo==h1i) false;
(arr [mid]==k) true;
(arr[mid]< k) help (arr, k,mid+1,h1);
help(arr,k,lo,mid) ;

A. 2T(n-1)+3 C. T(n/2)+3
B. T(n-1)*T(n-1)+3 D. T(n/2) *T(n/2)+3

Base Case:
Recurrence Relation:

(Example #2 continued)

(Example #2 continued)

Recap: Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?

e T(n)=3+T(n/2) T(1) =3
“Expand” the original relation to find an equivalent general expression in

2.
terms of the number of expansions.
e T(n) =3+3+T(n/4)
=3+3+3+T(n/8)
= 3k + T(n/(24))
3. Find a closed-form expression by setting the number of expansions to a

value which reduces the problem to a base case
* n/(2¥) =1 meansn=2% means k= 1log,n
* SoT(n)=101log, n+ 8 (get to base case and do it)

* SoT(n)is O(logn)

Common Recurrence Relations

Should know how to solve recurrences but helps to recognize some

common ones:

T(n) = O(1) + T(n-1)
T(n) = O(1) + 2T(n/2)
T(n) = O(1) + T(n/2)
T(n) = O(1) + 2T(n-1)
T(n) = O(n) + T(n-1)
T(n) = O(n) + T(n/2)
T(n) = O(n) + 2T(n/2)

linear

linear

logarithmic O(1og n)
exponential
quadratic

linear (why?)

O(n logn)

Big-O Big Picture

with its formal definition

In terms of Big-O, which function has the faster asymptotic running time?

f(n)

g(n)

worst-case running time

In terms of Big-O, which function has the faster asymptotic running time?

g(n)

f(n)

worst-case running time

0 100 200 300 400 500 600 700 800

In terms of Big-O, which function has the faster asymptotic running time?

f(n)

g(n)

worst-case running time

n
0 500 1000 1500 2000 2500 3000 3500 4000

Take-away:

Formal Definition of Big-O

“General Idea” explanation from last week:

Mathematical upper bound describing the behavior of how long a function
takes to run in terms of N. (The “shape” as N = <o)

Formal definition of Big-O:

Formal Definition of Big-O

Using the Formal Definition of Big-O

Definition: f(n) is in O(g(n)) if there exist constants
and n, such that f(n) g(n) foralln>

To show f(n) is in O(g(n)), pick a c large enough to “cover the constant
factors” and n,large enough to “cover the lower-order terms”

Example: Example:
Let f(n) = 3n%2+18 and g(n) = n? Let f(n) = 3n*+18 and g(n) = n°

Practice with the Definition of Big-O

Let f(n) = 1000n and g(n) = n?

What are some values of ¢ and
we can use to show f(n) =0(g(n))?

Definition: f(n) is in O(g(n)) if there exist constants
and n, such that f(n) g(n) foralln

More Practice with the Definition of Big-O

Let a(n) = 10n+3n? and b(n) = n?

What are some values of ¢ and
we can use to show a(n) =0(b(n))?

Definition: f(n) is in O(g(n)) if there exist constants
and n, such that f(n) g(n) foralln>

Constants and Lower Order Terms

* The constant multiplier ¢ is what allows functions that differ only in their
largest coefficient to have the same asymptotic complexity

Example:
* Eliminate lower-order terms because

 Eliminate coefficients because
* 3n? vs 5n? is meaningless without the cost of constant-time operations
e Can always re-scale anyways
* Do not ignore constants that are not multipliers! n3is not O(n?), 3"is not O(2")

Cousins of Big-O

Big-O, Big-Omega, Big-Theta, little-o, little-omega

Big-O & Big-Omega

Big-O: Big-Q:

f(n) isin O(g(n)) if there exist f(n)isin Q (g(n)) if there exist
constants ¢ and n, such that constants ¢ and n, such that
f(n) c g(n)foralln=n, f(n) cg(n)foralln=n,

Big-Theta

Big- O:
f(n)isin ©(g(n)) if f(n) is in
both O(g(n)) and Q (g(n))

ittle-o & little-omega

little-o: little-w:

f(n)isino(g(n))if f(n)isin w(g(n)) if

constants ¢ >0 there exists an n, constants ¢ >0 there exists an n,
s.t. f(n) c g(n)foralln=n, s.t. f(n) cg(n)forallnzn,

A

Big-O, Big-Omega, Big-Theta

* Which one is more useful to describe asymptotic behavior?

* A common error is to say O(f(n)) when you mean 6(f(n))
* Alinear algorithm is in both O(n) and O(n5)
* Better to say it is O(n)
* That means that it is not, for example O(log n)

Notes on Worst-Case Analysis

Analyzing “Worst-Case” Cheat Sheet

Basic operations take “some amount of” constant time
* Arithmetic (fixed-width)
* Assignment
* Access one Java field or array index
. etc.

(This is an approximation of reality: a very useful “lie”)

Control Flow Time Required

Consecutive statements Sum of time of statement
Conditionals Time of test plus slower branch
Loops Sum of iterations * time of body
Method calls Time of call’s body

Recursion Solve recurrence relation

Comments on Asymptotic Analysis

* Is choosing the lowest Big-O or Big-Theta the best way to choose the
fastest algorithm?

* Big-O can use other variables (e.g. can sum all of the elements of an
n-by-m matrix in O(nm))

