
Instructor:	Lilian	de	Greef
Quarter:	Summer	2017

CSE	373:	Data	Structures	and	Algorithms
Lecture	4:	Asymptotic	Analysis	part	3

Code	Style,	Recurrence	Relations,	Formal	Big-O	&	Cousins

Today:

•Code	Style
•Recurrence	Relations
• Formal	Definition	of	Big-O
•Cousins	of	Big-O
• Big-Omega
• Big-Theta
• little-o	
• little-omega

Code	Style

Code	Style

Why	does	code	style	matter?

Code	Style

Do Don’t

Code	Style	Critique

Code	Style	Critique	#2

Code	Style	Critique	#3

Code	Style	Critique	#4

Recurrence	Relations
How	to	calculate	Big-O	for	recursive	functions!
(Continued	from	last	lecture)

Example	#1:	Towers	of	Hanoi

// Prints instructions for moving disks from one
// pole to another, where the three poles are
// labeled with integers "from", "to", and "other".
// Code from rosettacode.org
public void move(int n, int from, int to, int other) {

if (n == 1) {
System.out.println("Move disk from pole " + from +

" to pole " + to);}
else {

move(n - 1, from, other, to);
move(1, from, to, other);
move(n - 1, other, to, from);

}
}

Example	#1:	Towers	of	Hanoi

if (n == 1) {
System.out.println("Move disk from pole " + from +

" to pole " + to);}

else {
move(n - 1, from, other, to);
move(1, from, to, other);
move(n - 1, other, to, from);

}

Base	Case:
Recurrence	Relation:

(Example	#1	continued)

(Example	#1	continued)

Example	#2:	Binary	Search

// Requires the array to be sorted.
// Returns whether k is in array.
public boolean find(int[]arr, int k){

return help(arr,k,0,arr.length);
}
private boolean help(int[]arr, int k, int lo, int hi) {

int mid = (hi+lo)/2; // i.e., lo+(hi-lo)/2
if(lo==hi) return false;
if(arr[mid]==k) return true;
if(arr[mid]< k) return help(arr,k,mid+1,hi);
else return help(arr,k,lo,mid);

2 3 5 16 37 50 73 75 126

Find	an	integer	in	a	sorted array
(Can	also	be	done	non-recursively)

// Requires the array to be sorted.
// Returns whether k is in array.
public boolean find(int[]arr, int k){

return help(arr,k,0,arr.length);
}
private boolean help(int[]arr, int k, int lo, int hi) {

int mid = (hi+lo)/2; // i.e., lo+(hi-lo)/2
if(lo==hi) return false;
if(arr[mid]==k) return true;
if(arr[mid]< k) return help(arr,k,mid+1,hi);
else return help(arr,k,lo,mid);

What	is	the	recurrence	relation?

A. 2T(n-1)	+	3

B. T(n-1)*T(n-1)	+	3

C. T(n/2)	+	3

D. T(n/2)	*	T(n/2)	+	3

// Requires the array to be sorted.
// Returns whether k is in array.
public boolean find(int[]arr, int k){

return help(arr,k,0,arr.length);
}
private boolean help(int[]arr, int k, int lo, int hi) {

int mid = (hi+lo)/2; // i.e., lo+(hi-lo)/2
if(lo==hi) return false;
if(arr[mid]==k) return true;
if(arr[mid]< k) return help(arr,k,mid+1,hi);
else return help(arr,k,lo,mid);

What	is	the	recurrence	relation?

Base	Case:
Recurrence	Relation:

(Example	#2	continued)

Recap:	Solving	Recurrence	Relations

1. Determine	the	recurrence	relation.		What	is	the	base	case?
• T(n)	=	3	+	T(n/2) T(1)	=	3

2. “Expand”	the	original	relation	to	find	an	equivalent	general	expression	in	
terms	of	the	number	of	expansions.
• T(n)		=	3	+	3	+	T(n/4)

=	3	+	3	+	3	+	T(n/8)
=	…
=	3k	+	T(n/(2k))

3. Find	a	closed-form	expression	by	setting	the	number	of	expansions to	a	
value	which	reduces	the	problem	to	a	base	case
• n/(2k)	=	1	means	n =	2k	 means	k	=	log2 n
• So	T(n)	=	10	log2 n +	8		(get	to	base	case	and	do	it)
• So	T(n)	is	O(log n)

Common	Recurrence	Relations

Should	know	how	to	solve	recurrences	but	helps	to	recognize	some
common	ones:

T(n)	=	O(1)	+	T(n-1) linear
T(n)	=	O(1)	+	2T(n/2)	 linear	
T(n)	=	O(1)	+	T(n/2)	 logarithmic	O(log n)
T(n)	=	O(1)	+	2T(n-1)	 exponential	
T(n)	=	O(n)	+	T(n-1)	 quadratic
T(n)	=	O(n)	+	T(n/2) linear	(why?)
T(n)	=	O(n)	+	2T(n/2)	 O(n	log n)

Big-O	Big	Picture
with	its	formal	definition

In	terms	of	Big-O,	which	function	has	the	faster	asymptotic	running	time?

f(n)

g(n)

n
0 1 2 3 4 5 6 7 8

w
or
st
-c
as
e	
ru
nn

in
g	
tim

e

In	terms	of	Big-O,	which	function	has	the	faster	asymptotic	running	time?

f(n)

g(n)

n
0 100 200 300 400 500 600 700 800

w
or
st
-c
as
e	
ru
nn

in
g	
tim

e

In	terms	of	Big-O,	which	function	has	the	faster	asymptotic	running	time?

Take-away:

f(n)

g(n)

n
0 500 1000 1500 2000 2500 3000 3500 4000

w
or
st
-c
as
e	
ru
nn

in
g	
tim

e

Formal	Definition	of	Big-O

“General	Idea”	explanation	from	last	week:	
Mathematical	upper	bound	describing	the	behavior	of	how	long	a	function	
takes	to	run	in	terms	of	N.	(The	“shape”	as	N	→	∞)

Formal	definition	of	Big-O:

Formal	Definition	of	Big-O
Definition:	f(n)	is	in	O(g(n)) if	there	exist	constants	

c and	n0 such	that		f(n)	£ c g(n)	for	all	n ³ n0

Using	the	Formal	Definition	of	Big-O
Definition:	f(n)	is	in	O(g(n)) if	there	exist	constants	

c and	n0 such	that		f(n)	£ c g(n)	for	all	n ³ n0

To	show	f(n)	is	in	O(g(n)),	pick	a	c large	enough	to	“cover	the	constant	
factors”	and	n0 large	enough	to	“cover	the	lower-order	terms”

Example:	
Let	f(n)	=	3n2+18	and	g(n)	=	n5

Example:	
Let	f(n)	=	3n2+18	and	g(n)	=	n2

