CSE 373: Data Structures and Algorithms

Lecture 3: Asymptotic Analysis part 2 Math Review, Inductive Proofs, Recursive Functions

Instructor: Lilian de Greef

Quarter: Summer 2017

Today:

- Brief Math Review (review mostly on your own)
- Continue asymptotic analysis with Big-O
- Proof by Induction
- Recursive Functions

Common Big-O Names

```
O(1)
              constant (same as O(k) for constant k)
O(\log n)
              logarithmic
O(n)
              linear
O(n \log n)
              "n log n"
O(n^2)
              quadratic
O(n^3)
              cubic
O(n^k)
              polynomial (where is k is any constant)
              exponential (where k is any constant > 1)
O(k^n)
```

A Few Common Big-O's

A Few Common Big-O's

A Few Common Big-O's

Powers of 2: Fun Facts

- A bit is 0 or 1 (just two different "letters" or "symbols")
- A sequence of *n* bits can represent 2ⁿ distinct things (For example, the numbers 1 through 2ⁿ)
- 2¹⁰ is 1024 ("about a thousand", kilo in CSE speak)
- 2²⁰ is "about a million", mega in CSE speak
- 2³⁰ is "about a billion", giga in CSE speak

Java: an int is 32 bits and signed, so "max int" is "about 2 billion" a long is 64 bits and signed, so "max long" is 2^{63} -1

Which means...

You could give a unique id to...

- Every person in the U.S. with 29 bits
- Every person in the world with 33 bits
- Every person to have ever lived with 38 bits (estimate)
- Every atom in the universe with 250-300 bits

So if a password is 128 bits long and randomly generated, do you think you could guess it?

Math Review: Logs & Exponents

(Interlude #2 from Big-O)

Logs & Exponents

Definition: $log_a x = y$ if $a^y = x$

- $log_2 32 =$
- $log_{10}10,000 =$

Outside of CSE, log(x) is often short-hand for In CSE, log(x) is often short-hand for

...but, does it matter?

Can Make a log₂ Out of Any log!

$$log_A x = \frac{log_B(x)}{log_B(A)}$$

SO

$$log_2 x = \frac{log_{whatever}(x)}{log_{whatever}(2)}$$

Other Properties of Logarithms

(to review on your own time)

- log(A * B) = logA + logB
 - So $log(N^k) = k * logN$
- log(A/B) = logA logB
- log(log x) = log log x
 - Grows as slowly as 2² grows quickly
- log(x)log(x) is written $log^2(x)$
 - It is greater than log(x) for all x > 2
 - It is not the same as log log x

Floor and Ceiling

(to review on your own time)

$$\lfloor 2.7 \rfloor = 2$$
 $\lfloor -2.7 \rfloor = -3$ $\lfloor 2 \rfloor = 2$

$$\begin{bmatrix} X \end{bmatrix}$$
 Ceiling function: the smallest integer $\geq X$

$$\begin{bmatrix} 2.3 \end{bmatrix} = 3$$
 $\begin{bmatrix} -2.3 \end{bmatrix} = -2$ $\begin{bmatrix} 2 \end{bmatrix} = 2$

Floor and Ceiling Properties

(to review on your own time)

1.
$$X-1<|X|\leq X$$

2.
$$X \leq \lceil X \rceil < X + 1$$

3. $\lfloor n/2 \rfloor + \lceil n/2 \rceil = n$ if n is an integer

Back to Big-O

What's the asymptotic runtime of this (semi-)pseudocode?

```
x := 0;
for i=1 to N do
   for j=1 to i do
    x := x + 3;
return x;
```

- A. O(n)
- B. $O(n^2)$
- C. O(n + n/2)
- D. None of the above

(Some textbooks format algorithms in this style of semi-pseudocode)

What's the asymptotic runtime of this (semi-)pseudocode?

```
x := 0;
for i=1 to N do
   for j=1 to i do
    x := x + 3;
return x;
```

A. O(n)

B. $O(n^2)$

C. O(n + n/2)

D. None of the above

How do we prove the right answer? Proof by Induction!

Inductive Proofs

(Interlude from Asymptotic Analysis)

Steps to Inductive Proof

1. If not given, **define n** (or "x" or "t" or whatever letter you use)

2. Base Case

3. Inductive Hypothesis (IHOP):

Assume what you want to prove is true for some arbitrary value k (or "p" or "d" or whatever letter you choose)

4. Inductive Step:

Use the IHOP (and maybe base case) to prove it's true for n = k+1

Example #0:

Proof that I can climb any length ladder

- 1. Let n = number of rungs on a ladder.
- 2. Base Case: for n = 1
- 3. Inductive Hypothesis (IHOP): Assume true for some arbitrary integer n = k.
- 4. Inductive Step: (aiming to prove it's true for n = k+1)
 - By IHOP, I can climb k steps of the ladder.
 - If I've climbed that far, I can always climb one more.
 - So I can climb k+1 steps.
 - I can climb forever!

Example #1

```
Prove that the number of loop iterations is \frac{n*(n+1)}{2}

x := 0;

for i=1 to N do

for j=1 to i do

x := x + 3;

return x;
```

(Extra room for notes)

Example #2:

Prove that $1 + 2 + 4 + 8 + ... + 2^n = 2^{n+1} - 1$

(Extra room for notes)

Useful Mathematical Property!

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

You'll use it or see it again before the end of CSE 373.

Example #3: (Parody) Reverse Induction! Proof by Reverse Induction That You Can Always Cage a Lion:

Let n = number of lions

Base Case: There exists some countable, arbitrarily large value of M such that when n = M, the lions are so packed together that it's trivial to cage one.

IHOP: Assume this is also true for n = k for some arbitrary value k.

Inductive Step: Then for n = k-1, release a lion to reduce the problem to the case of n = k, which by the IHOP is true.

QED:)

Fun fact: Reverse induction is a thing! The math part of the above is actually correct.

Big-O: Recursive Functions

How do we asymptotically analyze recursive functions?

Example #1: Towers of Hanoi

Example #1: Towers of Hanoi

```
// Prints instructions for moving disks from one
// pole to another, where the three poles are
// labeled with integers "from", "to", and "other".
// Code from rosettacode.org
public void move(int n, int from, int to, int other) {
    if (n == 1) {
        System.out.println("Move disk from pole " + from +
                           " to pole " + to);}
    else {
        move(n - 1, from, other, to);
        move(1, from, to, other);
        move(n - 1, other, to, from);
```

Example #1: Towers of Hanoi

Example #1: Solving the Recurrence Relation

Recurrence Relation:

(continued)

Example #2: Binary Search

2 3	5 16	37 50	73	75	126	
-----	------	-------	----	----	-----	--

Find an integer in a *sorted* array

```
(Can also be done non-recursively)
```

What is the recurrence relation?

A.
$$2T(n-1) + 3$$

C.
$$T(n/2) + 3$$

B.
$$T(n-1)*T(n-1) + 3$$

D.
$$T(n/2) * T(n/2) + 3$$