
Instructor:	Lilian	de	Greef
Quarter:	Summer	2017

CSE	373:	Data	Structures	and	Algorithms
Lecture	3:	Asymptotic	Analysis	part	2

Math	Review,	Inductive	Proofs,	Recursive	Functions

Today:

•Brief	Math	Review	(review	mostly	on	your	own)

•Continue	asymptotic	analysis	with	Big-O
•Proof	by	Induction
•Recursive	Functions

Common	Big-O	Names

O(1) constant	(same	as	O(k)	for	constant	k)
O(log n) logarithmic
O(n) linear
O(n	log n)					“n	log n”
O(n2) quadratic
O(n3) cubic
O(nk) polynomial	(where	is	k is	any	constant)
O(kn) exponential	(where	k is	any	constant	>	1)

0

5

10

15

1 2 3 4 5

A	Few	Common	Big-O's

O(1)

O(n)
O(n^2)
O(logn)

O(2^n)
O(nlogn)

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

A	Few	Common	Big-O's

O(1)

O(n)
O(n^2)
O(logn)

O(2^n)
O(nlogn)

0

1E+29

2E+29

3E+29

4E+29

5E+29

6E+29

7E+29

1 11 21 31 41 51 61 71 81 91

A	Few	Common	Big-O's

O(1)

O(n)
O(n^2)
O(logn)

O(2^n)
O(nlogn)

Powers	of	2:	Fun	Facts

• A	bit	is	0	or	1	(just	two	different	“letters”	or	“symbols”)
• A	sequence	of	n bits	can	represent	2n distinct	things

(For	example,	the	numbers	1	through	2n)
• 210 is	1024	(“about	a	thousand”,	kilo	in	CSE	speak)
• 220 is	“about	a	million”,	mega	in	CSE	speak
• 230 is	“about	a	billion”,	giga in	CSE	speak

Java:	an	int is	32	bits	and	signed,	so	“max	int”	is	“about	2	billion”
a	long is	64	bits	and	signed,	so	“max	long”	is	263-1

Which	means…

You	could	give	a	unique	id	to…
• Every	person	in	the	U.S.	with	29	bits
• Every	person	in	the	world	with	33	bits
• Every	person	to	have	ever	lived	with	38	bits	(estimate)
• Every	atom	in	the	universe	with	250-300	bits

So	if	a	password	is	128	bits	long	and	randomly	generated,	
do	you	think	you	could	guess	it?

Math	Review:	Logs	&	Exponents
(Interlude	#2	from	Big-O)

Logs	&	Exponents

Definition: 𝑙𝑜𝑔$𝑥 = 𝑦 if 𝑎) = 𝑥

• 𝑙𝑜𝑔*32 =

• 𝑙𝑜𝑔-.10,000 =

Outside	of	CSE,	𝑙𝑜𝑔(𝑥) is	often	short-hand	for
In	CSE,	𝑙𝑜𝑔(𝑥) is	often	short-hand	for

…but,	does	it	matter?

Can	Make	a	log2 Out	of	Any	log!

𝑙𝑜𝑔4𝑥 =
𝑙𝑜𝑔5(𝑥)	
𝑙𝑜𝑔5(𝐴)

so

𝑙𝑜𝑔*𝑥 =
𝑙𝑜𝑔78$9:;:<(𝑥)	
𝑙𝑜𝑔78$9:;:<(2)

Other	Properties	of	Logarithms

• 𝑙𝑜𝑔 𝐴 ∗ 𝐵 = 𝑙𝑜𝑔𝐴 + 𝑙𝑜𝑔𝐵
• So 𝑙𝑜𝑔 𝑁A = 𝑘 ∗ 𝑙𝑜𝑔𝑁

• 𝑙𝑜𝑔 𝐴/𝐵 = 𝑙𝑜𝑔𝐴 − 𝑙𝑜𝑔𝐵

• 𝑙𝑜𝑔 𝑙𝑜𝑔𝑥 = 𝑙𝑜𝑔 𝑙𝑜𝑔	𝑥
• Grows	as	slowly	as	22 grows	quickly

• 𝑙𝑜𝑔 𝑥 𝑙𝑜𝑔 𝑥 	is	written	𝑙𝑜𝑔* 𝑥
• It	is	greater	than	𝑙𝑜𝑔 𝑥 	for	all		𝑥 > 2
• It	is	not	the	same	as	𝑙𝑜𝑔 𝑙𝑜𝑔	𝑥

(to	review	on	your	own	time)

Floor	and	Ceiling

ë ûX

é ùX

Floor function: the largest integer < X

Ceiling function: the smallest integer > X

ë û ë û ë û 2232.722.7 =-=-=

é ù é ù é ù 2222.332.3 =-=-=

(to	review	on	your	own	time)

Floor	and	Ceiling	Properties

ë û
é ù

ë û é ù integer an is n ifnn/2n/23.
1XXX2.

XX1X1.

=+
+<£
£<-

(to	review	on	your	own	time)

Back	to	Big-O

What’s	the	asymptotic	runtime	of	this	(semi-)pseudocode?
x := 0;
for i=1 to N do
for j=1 to i do

x := x + 3;
return x;

A. O(n)
B. O(n2)
C. O(n	+	n/2)
D. None	of	the	above

(Some	textbooks	format	algorithms	
in	this	style	of	semi-pseudocode)

What’s	the	asymptotic	runtime	of	this	(semi-)pseudocode?
x := 0;
for i=1 to N do
for j=1 to i do

x := x + 3;
return x;

A. O(n)
B. O(n2)
C. O(n	+	n/2)
D. None	of	the	above

How	do	we	prove	
the	right	answer?
Proof	by	Induction!

Inductive	Proofs
(Interlude	from	Asymptotic	Analysis)

Steps	to	Inductive	Proof

1. If	not	given,	define	n (or	“x”	or	“t”	or	whatever	letter	you	use)

2. Base	Case
3. Inductive	Hypothesis	(IHOP):	

Assume	what	you	want	to	prove	is	true	for	some	arbitrary	value	k	
(or	“p”	or	“d”	or	whatever	letter	you	choose)

4. Inductive	Step:	
Use	the	IHOP	(and	maybe	base	case)	to	prove	it's	true	for	n	=	k+1

Example	#0:	
Proof	that	I	can	climb	any	length	ladder
1. Let	n	=	number	of	rungs	on	a	ladder.
2. Base	Case:	for	n	=	1
3. Inductive	Hypothesis	(IHOP):	

Assume	true	for	some	arbitrary	integer	n	=	k.
4. Inductive	Step:	(aiming	to	prove	it's	true	for	n	=	k+1)

• By	IHOP,	I	can	climb	k	steps	of	the	ladder.
• If	I’ve	climbed	that	far,	I	can	always	climb	one	more.	
• So	I	can	climb	k+1	steps.
• I	can	climb	forever!	

Example	#1
Prove	that	the	number	of	
loop	iterations	is

x := 0;
for i=1 to N do
for j=1 to i do

x := x + 3;
return x;

𝑛 ∗ (𝑛 + 1)
2

(Extra	room	for	notes)

Example	#2:	
Prove	that			1	+	2	+	4	+	8	+	…	+	2n =	2n+1 - 1

(Extra	room	for	notes)

Useful	Mathematical	Property!

You’ll	use	it	or	see	it	again	before	the	end	of	CSE	373.

H2I =
J

IK.

2JL- − 1

Example	#3:	(Parody)	Reverse	Induction!
Proof	by	Reverse	Induction	That	You	Can	Always	Cage	a	Lion:

Let	n	=	number	of	lions
Base	Case:	There	exists	some	countable,	arbitrarily	large	value	of	M	such	that	
when	n	=	M,	the	lions	are	so	packed	together	that	it's	trivial	to	cage	one.
IHOP:	Assume	this	is	also	true	for	n	=	k	for	some	arbitrary	value	k.
Inductive	Step:	Then	for	n	=	k-1,	release	a	lion	to	reduce	the	problem	to	the	case	
of	n	=	k,	which	by	the	IHOP	is	true.
QED	:)

Fun	fact:	Reverse	induction	is	a	thing!	The	math	part	of	the	above	is	actually	correct.

Big-O:	Recursive	Functions
How	do	we	asymptotically	analyze	recursive	functions?

Example	#1:	Towers	of	Hanoi

Example	#1:	Towers	of	Hanoi

// Prints instructions for moving disks from one
// pole to another, where the three poles are
// labeled with integers "from", "to", and "other".
// Code from rosettacode.org
public void move(int n, int from, int to, int other) {

if (n == 1) {
System.out.println("Move disk from pole " + from +

" to pole " + to);}
else {

move(n - 1, from, other, to);
move(1, from, to, other);
move(n - 1, other, to, from);

}
}

Example	#1:	Towers	of	Hanoi

if (n == 1) {
System.out.println("Move disk from pole " + from +

" to pole " + to);}

else {
move(n - 1, from, other, to);
move(1, from, to, other);
move(n - 1, other, to, from);

}

Example	#1:	Solving	the	Recurrence	Relation

Recurrence	Relation:

(continued)

Example	#2:	Binary	Search

// Requires the array to be sorted.
// Returns whether k is in array.
public boolean find(int[]arr, int k){

return help(arr,k,0,arr.length);
}
private boolean help(int[]arr, int k, int lo, int hi) {

int mid = (hi+lo)/2; // i.e., lo+(hi-lo)/2
if(lo==hi) return false;
if(arr[mid]==k) return true;
if(arr[mid]< k) return help(arr,k,mid+1,hi);
else return help(arr,k,lo,mid);

2 3 5 16 37 50 73 75 126

Find	an	integer	in	a	sorted array
(Can	also	be	done	non-recursively)

// Requires the array to be sorted.
// Returns whether k is in array.
public boolean find(int[]arr, int k){

return help(arr,k,0,arr.length);
}
private boolean help(int[]arr, int k, int lo, int hi) {

int mid = (hi+lo)/2; // i.e., lo+(hi-lo)/2
if(lo==hi) return false;
if(arr[mid]==k) return true;
if(arr[mid]< k) return help(arr,k,mid+1,hi);
else return help(arr,k,lo,mid);

What	is	the	recurrence	relation?

A. 2T(n-1)	+	3

B. T(n-1)*T(n-1)	+	3

C. T(n/2)	+	3

D. T(n/2)	*	T(n/2)	+	3

