CSE 373: Data Structures and Algorithms

Lecture 3: Asymptotic Analysis part 2 Math Review, Inductive Proofs, Recursive Functions

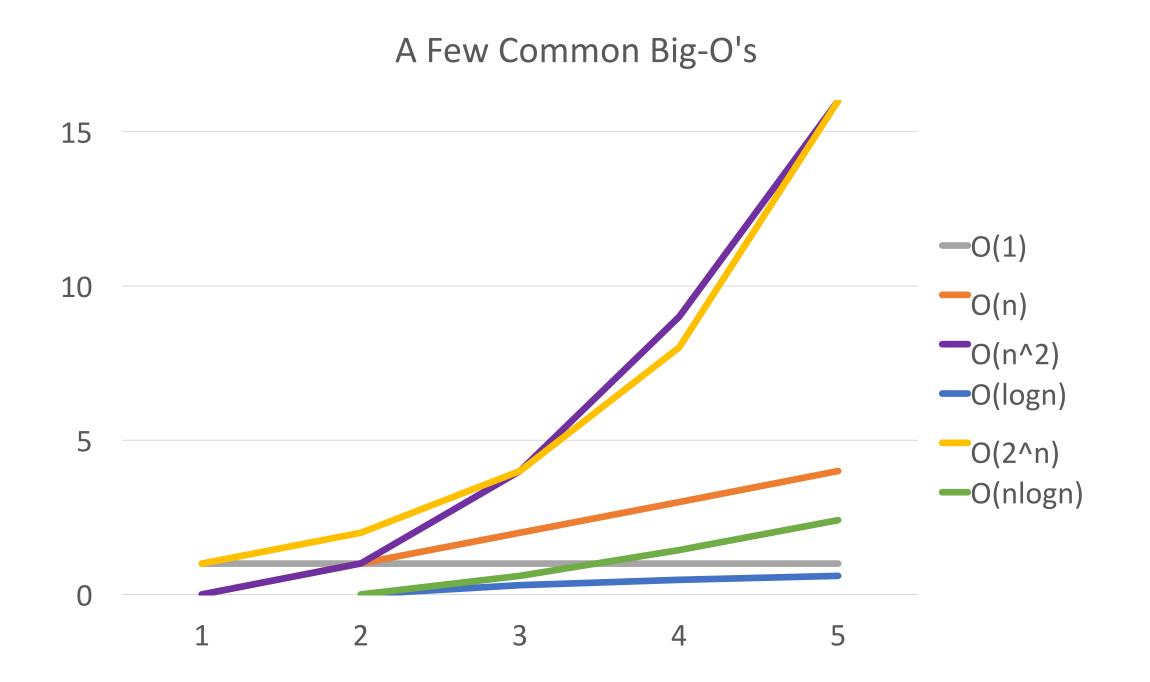
> Instructor: Lilian de Greef Quarter: Summer 2017

Today:

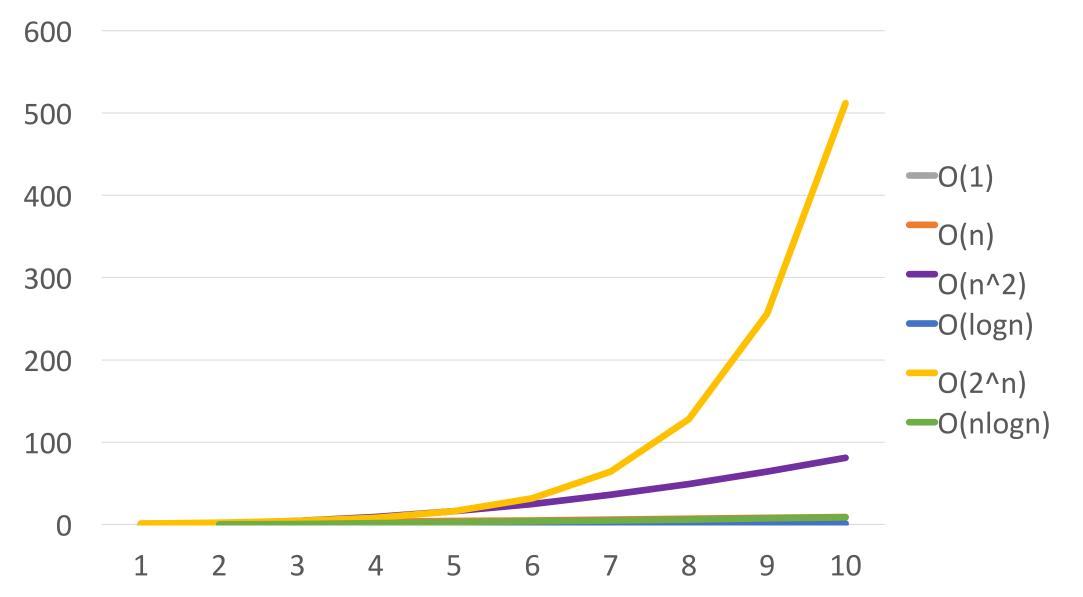
- Brief Math Review (review mostly on your own)
- Continue asymptotic analysis with Big-O
- Proof by Induction
- Recursive Functions

Common Big-O Names

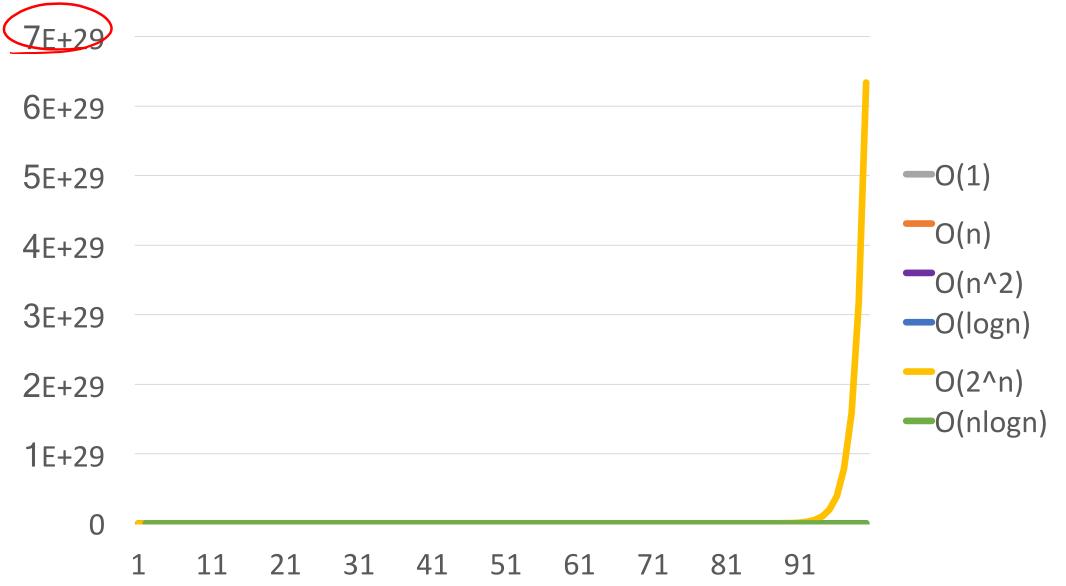
- O(1) constant (same as O(k) for constant k)
- O(log n) logarithmic
- O(n) linear
- O(n **log** *n*) "n **log** *n*"
- *O*(*n*²) quadratic
- $O(n^3)$ cubic
- $O(n^k)$ polynomial (where is k is any constant)
- $O(k^n)$ exponential (where k is any constant > 1)



A Few Common Big-O's



A Few Common Big-O's



Powers of 2: Fun Facts

0110

- A bit is 0 or 1 (just two different "letters" or "symbols")
- A sequence of n bits can represent 2ⁿ distinct things (For example, the numbers 1 through 2ⁿ)
- 2¹⁰ is 1024 ("about a thousand", kilo in CSE speak)
- 2²⁰ is "about a million", mega in CSE speak
- 2³⁰ is "about a billion", giga in CSE speak

Java: an int is 32 bits and signed, so "max int" is "about 2 billion" a long is 64 bits and signed, so "max long" is 2⁶³-1

Which means...

You could give a unique id to...

- Every person in the U.S. with 29 bits
- Every person in the world with 33 bits
- Every person to have ever lived with 38 bits (estimate)
- Every atom in the universe with 250-300 bits

So if a password is 128 bits long and randomly generated, do you think you could guess it?

Math Review: Logs & Exponents

(Interlude #2 from Big-O)

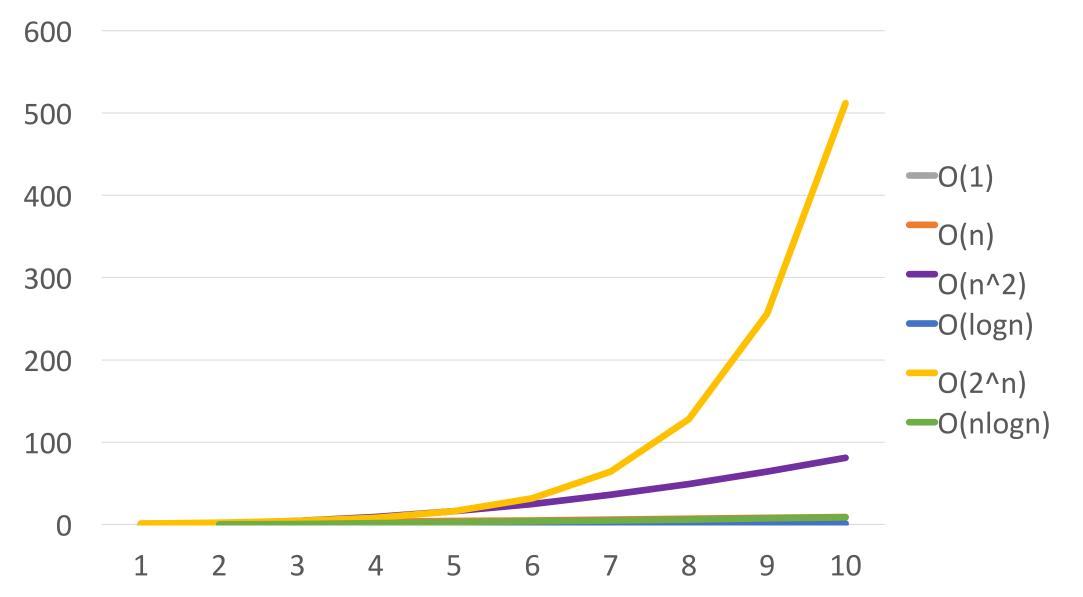
Logs & Exponents

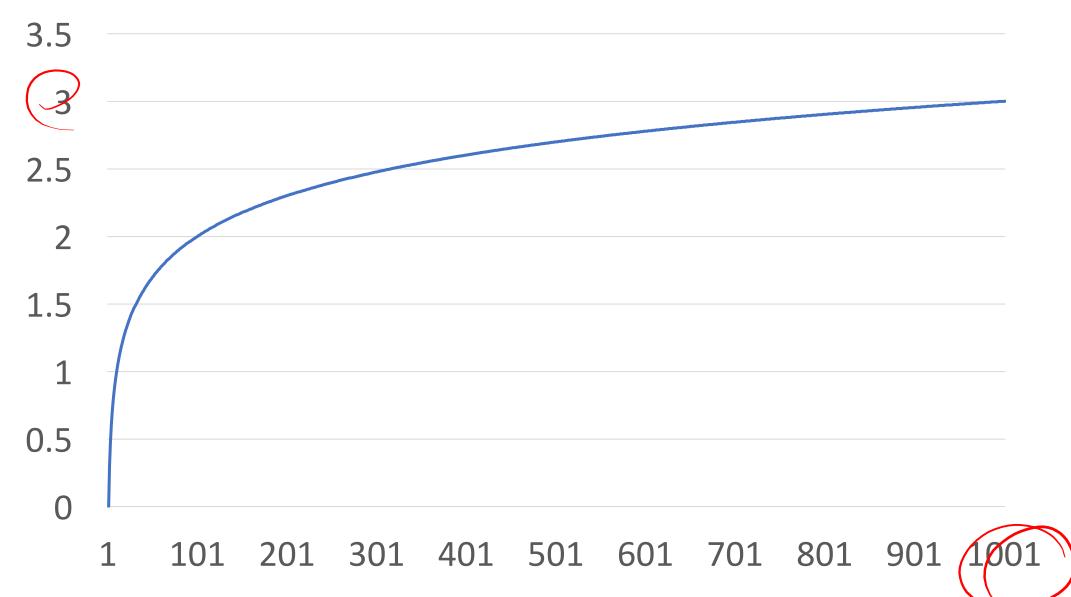
Definition: $log_a x = y$ if $a^y = x$

•
$$log_2 32 = 5$$

• $log_{10} 10,000 = 4$

A Few Common Big-O's





Logs & Exponents

Definition: $log_a x = y$ if $a^y = x$

•
$$log_2 32 =$$

•
$$log_{10}10,000 =$$

Outside of CSE, log(x) is often short-hand for $\log x$ In CSE, log(x) is often short-hand for $\log_2 x$

...but, does it matter?

Can Make a *log*₂ Out of Any *log*!

 $log_A x = \frac{log_B(x)}{log_B(A)}$

SO

 $log_{2}x = \frac{log_{whatever}(x)}{log_{whatever}(2)}$ = 109 where X · (19) USW(2)

Other Properties of Logarithms

(to review on your own time)

- log(A * B) = logA + logB
 - So $log(N^k) = k * logN$
- log(A/B) = logA logB
- log(log x) = log log x
 - Grows as slowly as 2² grows quickly
- log(x)log(x) is written $log^2(x)$
 - It is greater than log(x) for all x > 2
 - It is not the same as log log x

Floor and Ceiling

(to review on your own time)

 $\begin{bmatrix} X \end{bmatrix}$ Floor function: the largest integer $\leq X$ $\begin{bmatrix} 2.7 \end{bmatrix} = 2$ $\begin{bmatrix} -2.7 \end{bmatrix} = -3$ $\begin{bmatrix} 2 \end{bmatrix} = 2$

 $\begin{bmatrix} X \end{bmatrix}$ Ceiling function: the smallest integer $\ge X$ $\begin{bmatrix} 2.3 \end{bmatrix} = 3$ $\begin{bmatrix} -2.3 \end{bmatrix} = -2$ $\begin{bmatrix} 2 \end{bmatrix} = 2$

Floor and Ceiling Properties

(to review on your own time)

- 1. $X 1 < \lfloor X \rfloor \le X$
- $2. \quad X \leq \left\lceil X \right\rceil < X + 1$
- 3. $\lfloor n/2 \rfloor + \lceil n/2 \rceil = n$ if n is an integer

Back to Big-O

What's the asymptotic runtime of this (semi-)pseudocode?

x := 0; for i=1 to N do for j=1 to i do x := x + 3; return x;

A. O(n)B. $O(n^2)$ C. O(n + n/2)D. None of the above

worst case = Niterations NEI = 2 = 2 1+2 - 3 1+2+3 $\sum_{i=1}^{n-1} i = \frac{n+1}{2}$ How do we prove (n+1)- the right answer? $\frac{2}{0(h^2)}$ Proof by Induction!

Inductive Proofs

(Interlude from Asymptotic Analysis)

Steps to Inductive Proof $2 \times \sqrt{2} = 2 \times \sqrt{2}$

1. If not given, define n (or "x" or "t" or whatever letter you use)

plug in kel in j'# es

- 2. Base Case P(#) is true
- **3. Inductive Hypothesis (IHOP):** Assume true P(L)Assume what you want to prove is true for some arbitrary value k (or "p" or "d" or whatever letter you choose)

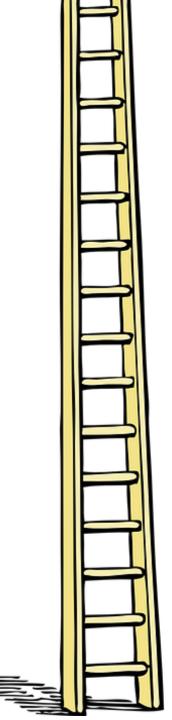
Lir kt

4. Inductive Step: $sh_{\ell} \omega + rne \left(P(L+1) \right) \left(\frac{1}{2} \sqrt{2} \right) = 0$ Use the IHOP (and maybe base case) to prove it's true for n = k+1

Example #0:

Proof that I can climb any length ladder

- 1. Let n = number of rungs on a ladder.
- **2.** Base Case: for n = 1 \checkmark
- **3. Inductive Hypothesis (IHOP):** Assume true for some arbitrary integer n = k.
- **4.** Inductive Step: (aiming to prove it's true for n = k+1)
 - By IHOP, I can climb k steps of the ladder.
 - If I've climbed that far, I can always climb one more.
 - So I can climb k+1 steps.
 - I can climb forever!



Example #1
Prove that the number of
loop iterations is
$$\frac{\eta * (n + 1)}{2}$$
 @ Base Case: true for n=1
n=1 $\frac{1(1+1)}{2} = \frac{1}{2} = 1$
 $x := 0;$
for i=D to N do
for j=1 to i do
 $x := x + 3;$
return x;
o i=h: same as n=h
and has jet!
 $0 n=N$
 $0 n=N$
 $0 Base Case: true for n=1
 $n=1 \frac{1(1+1)}{2} = \frac{1}{2} = 1$
 $n=1 \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = 1$
 $n=1 \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
 $n=1 \frac{1}{2} = \frac{1}{2}$$

to

(Extra room for notes) Prove (n+1) iterations) Inductive step: (Goal: show it's true for n= k-1) $\binom{k+1}{(k+1)+1}$ = (iterations for N=4e) + (k+1) For N= h+1 $= \frac{k(h+1)}{2} + k+1$ by IHOP $= \frac{k^2 + k}{2} + \frac{2(k+1)}{2}$ (p[n+1] = p(n)+n+1) +rue Gor this problem $= \frac{k^{2} + k + 2k + 2}{k + 2k + 2} = \frac{(k + 1)(k + 2)}{k + 2k + 2}$ (k+1)((k+1)-1)RE

Example #2:

$$h = variable$$

 $k = number$
Prove that $1 + 2 + 4 + 8 + ... + 20 = 2^{n+1} - 1$
 $1 \cdot (n = n)$
2. Base case: $n = 0$
 $2^{\circ} = 1$
 $2^{\circ} = 1$
 $2^{\circ} = 1$
 $2^{\circ} = 2^{\circ+1} - 1 = 2 - 1 = 1$
 $2^{\circ} = 1$
 $3 \cdot 1 + 0p$: assume true for $n = k$
 $4 \cdot 1 + 1 + 2 + 4 + 8 + ... + 20 = 2^{n+1} - 1$
 $2^{\circ} = 2^{n+1} - 1 = 2 - 1 = 1$
 $4 \cdot 1 + 1 + 2 + 4 + 8 + ... + 20 = 2^{n+1} - 1$
 $4 \cdot 2^{\circ} = 2^{n+1} - 1 = 2 - 1 = 1$
 $4 \cdot 1 + 1 + 2 + 4 + 8 + ... + 20 = 2^{n+1} - 1$
 $4 \cdot 2^{\circ} = 2^{n+1} -$

 $1 \times 10 P = n = k - 1$ (s = n = k + 2

(Extra room for notes) $(w + s) = 2^{k+1} = 2^{k+2} = 2^{k+1} =$ summation $\sum_{i=1}^{k-1} = (\sum_{i=1}^{k} 2^{i}) + 2^{k+1}$ $2(2^{x}) = 2^{k+1}? = 2^{k+1}-1+2^{k+1}$ by 212×=(2·2·2·····2)2= 2 k+1 + 2 h+1 -) X fimes = 2(2^{k+1})-1 = 2^k $2^{2} = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$ X+1 fines

Useful Mathematical Property!

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

You'll use it or see it again before the end of CSE 373.

Example #3: (Parody) Reverse Induction! Proof by Reverse Induction That You Can Always Cage a Lion:

Let n = number of lions

Base Case: There exists some countable, arbitrarily large value of M such that when n = M, the lions are so packed together that it's trivial to cage one.

IHOP: Assume this is also true for n = k for some arbitrary value k.

Inductive Step: Then for n = k-1, release a lion to reduce the problem to the case of n = k, which by the IHOP is true.

QED :)

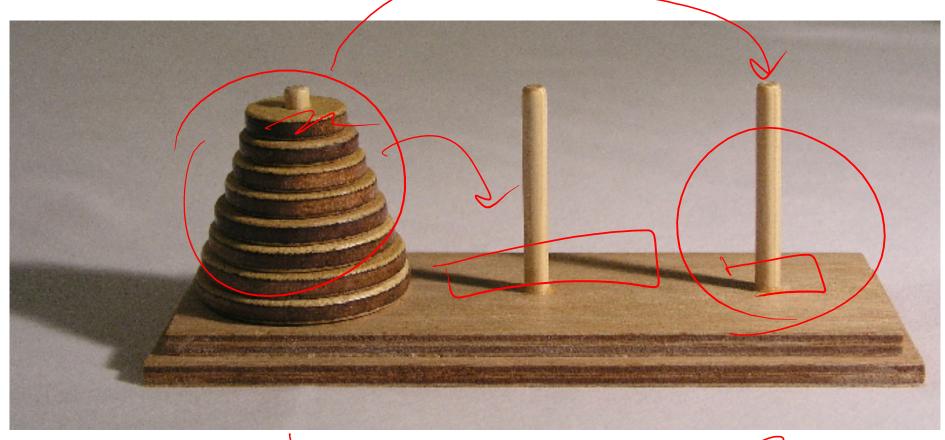
Fun fact: Reverse induction is a thing! The math part of the above is actually correct.

Recursive In: In that all's itself

Big-O: Recursive Functions

How do we asymptotically analyze recursive functions?

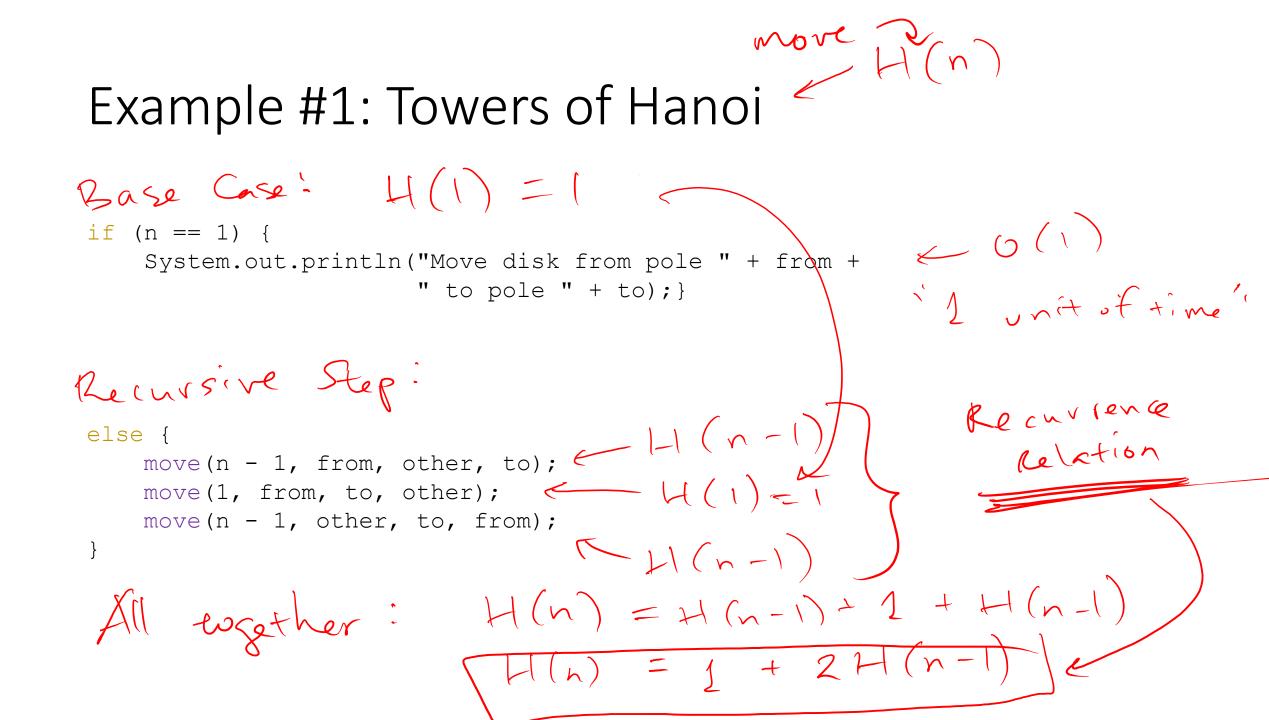
Example #1: Towers of Hanoi

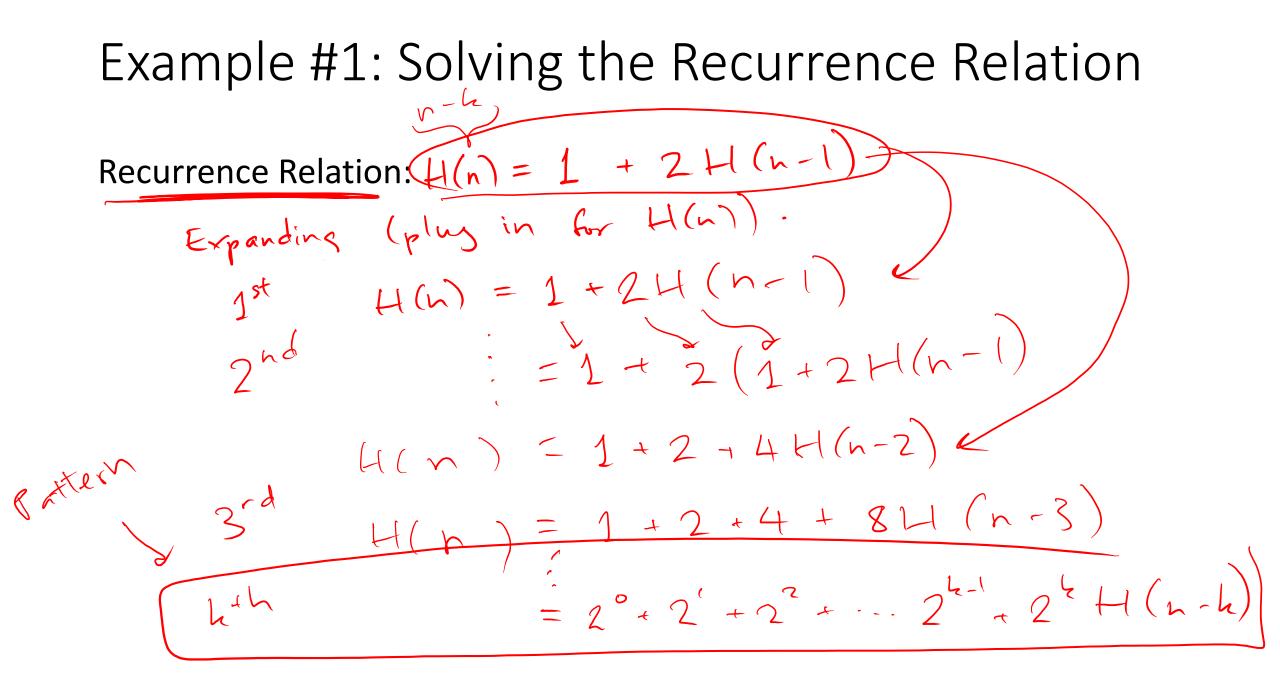


2

Example #1: Towers of Hanoi

```
// Prints instructions for moving disks from one
                                                                     9
    // pole to another, where the three poles are
      labeled with integers "from", "to", and "other".
                                                            fibra=1 to=3
other=2
    // Code from rosettacode.org
   public void nove (int n, int from, int to, int other) {
        if (n == 1)
Base
            System.out.println("Move disk from pole " + from +
                               " to pole " + to); }
       else {
           move(n - 1, from, other, to);
           move(1, from, to, other);
            move(n - 1, other, to, from);
```





 $= 2^{k} - 1 + 2^{k} H(n-k)$ (continued) Base case is at H(1), so let's solve n-le=1 the it in: $H(n) = 2^{k} - 1 + 2^{k} H(n-k) \ell$ $= 2^{n-1} - 1 + 2^{n-1} H(n - [n-1])$ $= 2^{n-1} + 2^{n-1}(i)$ H(i) $= 2(2^{-1}) - 1 = 2^{-1}$