CSE 373: Data Structures and Algorithms
 Lecture 2: Wrap up Queues, Asymptotic Analysis, Proof by Induction

Instructor: Lilian de Greef
Quarter: Summer 2017

Today:

- Announcements
- Wrap up Queues
- Begin Asymptotic Analysis: Big-O
- Proof by Induction

Announcement: Office Hours

- Announced! See course webpage for times
- Most held in $3^{\text {rd }}$ floor breakouts in CSE (whiteboards near stairs)
- Lilian's additional "actual office" office hours
- CSE 220 (a more private environment)
- During listed times
- And by appointment! (email me >24 hours ahead of time with several times that work for you)
- Come talk to me about anything! (feedback, grad school, Ultimate Frisbee, life problems, whatever)

Announcement: Sections

- When \& where: listed on course webpage
- What: TA-led...
- Review sessions of course material
- Practice problems
- Question-answering
- Optional, but highly encouraged!

I wouldn't have passed 332 (Data Structures and Parallelism) without regularly going to section! - Vlad (TA)

Other Announcements

- Homework 1 is out
- On material covered in Lecture 1
- Go forth!
- ...or at least get Eclipse set up today.
- Only required course reading:
- 10 pages, easy read on commenting style
- Due beginning of class on Monday
- July $3^{\text {rd }}$
- Not an official UW holiday (sorry guys)
- But I'm declaring it an unofficial holiday! Go enjoy a 4-day July $4^{\text {th }}$ weekend

University Holidays

Classes are not in session on the following holidays:

| SUMMER 2017 | | A-term |
| :--- | :--- | :--- |\quad B-term | Full-term | July 4, 2017
 Independence Day |
| :--- | :--- |
| July 4, 2017
 Independence Day | |

Finishing up Queues
Let's resolve that cliff-hanger!

If we can assume the queue is not empty, how can we implement dequeue()?

```
Public E dequeue() {
        size--;
        E e = array[front];
    <Your code here!>
    return e;
}
```



```
A) front++;
    if (front == array.length)
    front = 0;
```

B) rear = rear-1;

```
    if (rear < 0)
        rear = array.length-1;
```

C) for (int $i=0 ; i<r e a r ; i++$)
\}
front++;
if (front == array.length)
front = 0;
D) None of these are correct
(Notes for yourself)

If we can assume the array is not full, how can we implement enqueue(E e)?

```
Public enqueue(E e) {
    <Your code here!>
    size++;
}
```


front
A)

```
rear++;
if (rear == array.length)
        rear = 0;
    array[rear] = e;
```

B) rear++;
array[rear] = e;
C) for (int $i=f r o n t ; i<r e a r ; ~ i++) ~\{$
array[i] = array[i+1] \}
array[rear] = e; rear++;
D) None of these are correct
(Notes for yourself)

Between arrays and linked-lists which one *always* is the fastest at enqueue, dequeue, and seeKthElement operations?
(where seeKthElement lets you peek at the kth element in the stack)

Fastest: enqueue dequeue seeKthElement
A) Arrays Linked-Lists Neither
B) Linked-lists Neither Neither
C) Linked-lists Neither Arrays
D) They're all the same
(Notes for yourself)

Which one's better?

Arrays
Linked-lists

Trade-offs!

- The ability to choose wisely between trade-offs is why it's important to understand underlying data structures.
- Common Trade-offs
- Time vs space
- One operation's efficiency vs another
- Generality vs simplicity vs performance

Asymptotic Analysis
Oh ho! The Big-O!

Algorithm Analysis

- Why: to help choose the right algorithm or data structure for the job
- Often in asymptotic terms
- Most common way: Big-O Notation
- General idea:
- A common way to describe "worst-case running time"

Example \#1:

The barn is an array of Cows, excitement is an integer, and Cow.addHat () runs in constant time.

```
println("The alien is visiting!");
println("Party time!");
excitement++;
for (int i=0; i<barn.length; i++) {
    Cow cow = barn[i];
    cow.addHat();
}
```

Important! Always begin by specifying what " n " is!

Let's assume that one line of code takes 1 "unit of time" to run This is not always true, i.e. calls to non-constant-time methods)

Example \#1:

```
println("The alien is visiting!");
println("Party time!");
excitement++;
for (int i=0; i<barn.length; i++) {
    Cow cow = barn[i];
    cow.addHat();
}
```


Example \#2: Your turn!

```
for (Person player: sportsTeam) {
    player.smile();
    for (Person teamMate: sportsTeam) {
        player.say("Good game!");
        player.highFive(teamMate);
}
```

Assume that the above Person method calls run in constant time

What's the asymptotic runtime of this (semi-)pseudocode?

```
x := 0;
for i=1 to N do
    for j=1 to i do
        x := x + 3;
    return x;
```

A. $\mathrm{O}(\mathrm{n})$
B. $\mathrm{O}\left(\mathrm{n}^{2}\right)$
C. $O(n+n / 2)$
D. None of the above

What's the asymptotic runtime of this (semi-)pseudocode?

```
x := 0;
for i=1 to N do
    for j=1 to i do
        x := x + 3;
return x;
```

A. $\mathrm{O}(\mathrm{n})$
B. $\mathrm{O}\left(\mathrm{n}^{2}\right)$
C. $O(n+n / 2)$

How do we prove
the right answer?
Proof by Induction!
D. None of the above

Inductive Proofs

(Interlude from Asymptotic Analysis)

Steps to Inductive Proof

1. If not given, define \mathbf{n} (or " x " or " t " or whatever letter you use)
2. Base Case
3. Inductive Hypothesis (IHOP):

Assume what you want to prove is true for some arbitrary value k (or "p" or "d" or whatever letter you choose)
4. Inductive Step:

Use the base case and IHOP to prove it's true for $n=k+1$

Example \#0: Proof that I can climb any length ladder

1. Let $\mathbf{n}=$ number of rungs on a ladder.
2. Base Case: for $\mathrm{n}=1$
3. Inductive Hypothesis (IHOP):

Assume true for some arbitrary integer $\mathrm{n}=\mathrm{k}$.
4. Inductive Step: (aiming to prove it's true for $n=k+1$)

- If I climb k steps of the ladder, then I have one step left to go.
- By IHOP, I can climb k steps of the ladder.
- By Base Case, I can climb the last step.
- So I can climb k+1 steps.
- I can climb forever!

Example \#1

Prove that the number of
loop iterations is $\frac{n *(n+1)}{2}$

```
x := 0;
for i=1 to N do
    for j=1 to i do
        x := x + 3;
return x;
```

(Extra room for notes)

Example \#2:
Prove that $1+2+4+8+\ldots+2^{n}=2^{n+1}-1$
(Extra room for notes)

Useful Mathematical Property!

$$
\sum_{i=0}^{n} 2^{i}=2^{n+1}-1
$$

You'll use it or see it again before the end of CSE 373.

Powers of 2

- A bit is 0 or 1 (just two different "letters" or "symbols")
- A sequence of n bits can represent 2^{n} distinct things
(For example, the numbers 0 through $2^{n}-1$)
- 2^{10} is 1024 ("about a thousand", kilo in CSE speak)
- 2^{20} is "about a million", mega in CSE speak
- 2^{30} is "about a billion", giga in CSE speak

Java: an int is 32 bits and signed, so "max int" is "about 2 billion" a long is 64 bits and signed, so "max long" is $2^{63}-1$

Which means...

You could give a unique id to...

- Every person in the U.S. with 29 bits
- Every person in the world with 33 bits
- Every person to have ever lived with 38 bits (estimate)
- Every atom in the universe with 250-300 bits

So if a password is 128 bits long and randomly generated, do you think you could guess it?

Example \#3: (Parody) Reverse Induction!
 Proof by Reverse Induction That You Can Always Cage a Lion:

Let $\mathbf{n}=$ number of lions
Base Case: There exists some countable, arbitrarily large value of M such that when $\mathrm{n}=\mathrm{M}$, the lions are so packed together that it's trivial to cage one.

IHOP: Assume this is also true for $n=k$.
Inductive Step: Then for $n=k-1$, release a lion to reduce the problem to the case of $n=k$, which by the IHOP is true.

QED :)

Fun fact: Reverse induction is a thing! The math part of the above is actually correct.

