
Instructor:	Lilian	de	Greef
Quarter:	Summer	2017

CSE	373:	Data	Structures	and	Algorithms
Lecture	2:	Wrap	up	Queues,	Asymptotic	Analysis,	Proof	

by	Induction



Today:

•Announcements
•Wrap	up	Queues
•Begin	Asymptotic	Analysis:	Big-O
•Proof	by	Induction



Announcement:	Office	Hours

• Announced!	See	course	webpage	for	times
• Most	held	in	3rd floor	breakouts	in	CSE	(whiteboards	near	stairs)
• Lilian’s	additional	”actual	office”	office	hours
• CSE	220	(a	more	private	environment)
• During	listed	times
• And	by	appointment!	(email	me	>24	hours	ahead	of	time	with	several	times	
that	work	for	you)
• Come	talk	to	me	about	anything!	(feedback,	grad	school,	Ultimate	Frisbee,	life	
problems,	whatever)



Announcement:	Sections
• When	&	where:	listed	on	course	webpage
• What:	TA-led…
• Review	sessions	of	course	material
• Practice	problems
• Question-answering

• Optional,	but	highly	encouraged!

I	wouldn't	have	passed	332	(Data	
Structures	and	Parallelism)	without	
regularly	going	to	section!	– Vlad	(TA)



Other	Announcements

• Homework	1	is	out
• On	material	covered	in	Lecture	1
• Go	forth!
• …or	at	least	get	Eclipse	set	up	today.

• Only	required	course	reading:
• 10	pages,	easy	read	on	commenting	style
• Due	beginning	of	class	on	Monday

• July	3rd
• Not	an	official	UW	holiday	(sorry	guys)
• But	I’m	declaring	it	an	unofficial	holiday!
Go	enjoy	a	4-day	July	4th weekend

!🎉



Finishing	up	Queues
Let’s	resolve	that	cliff-hanger!



If	we	can	assume	the	queue	is	not	empty,	how	can	we	implement	
dequeue()?

Public E dequeue() {
size--;
E e = array[front];
<Your code here!>
return e;

}

front++;
if (front == array.length)

front = 0;

rear = rear-1;
if (rear < 0)

rear = array.length-1;

for (int i = 0; i < rear; i++) {
array[i] = array[i+1]

}
front++;
if (front == array.length)

front = 0;

None	of	these	are	correct

A)

B)

C)

D)

0
1

2

size-1

i

h
g

f e
front

rear



(Notes	for	yourself)



If	we	can	assume	the	array	is	not	full,	how	can	we	implement	
enqueue(E	e)?

Public enqueue(E e) {
<Your code here!>
size++;

}

rear++;
array[rear] = e;

for (int i=front; i<rear; i++) {
array[i] = array[i+1]

}
array[rear] = e;
rear++;

None	of	these	are	correct
B)

C)

D)

0
1

2

size-1

i

h
g

f e
front

rear

rear++;
if (rear == array.length)

rear = 0;
array[rear] = e;

A)



(Notes	for	yourself)



Between	arrays	and	linked-lists	which	one	*always*	is	the	fastest	at	
enqueue,	dequeue,	and	seeKthElement operations?	
(where	seeKthElement lets	you	peek	at	the	kth	element	in	the	stack)

Fastest: enqueue dequeue seeKthElement

A) Arrays Linked-Lists Neither

B) Linked-lists Neither Neither

C) Linked-lists Neither Arrays

D) They’re	all	the	same



(Notes	for	yourself)



Which	one’s	better?

Arrays Linked-lists



Trade-offs!

• The	ability	to	choose	wisely	between	trade-offs	is	why	it’s	important	
to	understand	underlying	data	structures.
• Common	Trade-offs
• Time	vs	space
• One	operation’s	efficiency	vs	another	
• Generality	vs	simplicity	vs	performance	



Asymptotic	Analysis
Oh	ho!	The	Big-O!



Algorithm	Analysis

• Why:	to	help	choose	the	right	algorithm	or	data	structure	for	the	job
• Often	in	asymptotic terms

• Most	common	way: Big-O	Notation
• General	idea:

• A	common	way	to	describe	“worst-case	running	time”



Example	#1:
The	barn is	an	array	of	Cows,	excitement	is	an	integer,	and	
Cow.addHat()runs	in	constant	time.

println("The alien is visiting!");
println("Party time!");
excitement++;
for (int i=0; i<barn.length; i++) {

Cow cow = barn[i];
cow.addHat();

}

Let's	assume	that	one	line	of	code	takes	1	"unit	of	time"	to	run
This	is	not	always	true,	i.e.	calls	to	non-constant-time	methods)

Important!	Always	begin	
by	specifying	what	“n”	is!
(or	“x”or “y”	or	whatever	letter)



Example	#1:
println("The alien is visiting!");
println("Party time!");
excitement++;
for (int i=0; i<barn.length; i++) {

Cow cow = barn[i];
cow.addHat();

}



Example	#2:	Your	turn!

for (Person player: sportsTeam) {
player.smile();
for (Person teamMate: sportsTeam) {

player.say(”Good game!");
player.highFive(teamMate);

}

Assume	that	the	above		Person method	calls	run	in	constant	time



What’s	the	asymptotic	runtime	of	this	(semi-)pseudocode?
x := 0;
for i=1 to N do
for j=1 to i do

x := x + 3;
return x;

A. O(n)
B. O(n2)
C. O(n	+	n/2)
D. None	of	the	above



What’s	the	asymptotic	runtime	of	this	(semi-)pseudocode?
x := 0;
for i=1 to N do
for j=1 to i do

x := x + 3;
return x;

A. O(n)
B. O(n2)
C. O(n	+	n/2)
D. None	of	the	above

How	do	we	prove	
the	right	answer?
Proof	by	Induction!



Inductive	Proofs
(Interlude	from	Asymptotic	Analysis)



Steps	to	Inductive	Proof

1. If	not	given,	define	n (or	“x”	or	“t”	or	whatever	letter	you	use)

2. Base	Case
3. Inductive	Hypothesis	(IHOP):	

Assume	what	you	want	to	prove	is	true	for	some	arbitrary	value	k	
(or	“p”	or	“d”	or	whatever	letter	you	choose)

4. Inductive	Step:	
Use	the	base	case	and	IHOP	to	prove	it's	true	for	n	=	k+1



Example	#0:	
Proof	that	I	can	climb	any	length	ladder
1. Let	n	=	number	of	rungs	on	a	ladder.
2. Base	Case:	for	n	=	1
3. Inductive	Hypothesis	(IHOP):	

Assume	true	for	some	arbitrary	integer	n	=	k.
4. Inductive	Step:	(aiming	to	prove	it's	true	for	n	=	k+1)
• If	I	climb	k	steps	of	the	ladder,	then	I	have	one	step	left	to	go.	
• By	IHOP,	I	can	climb	k	steps	of	the	ladder.
• By	Base	Case,	I	can	climb	the	last	step.
• So	I	can	climb	k+1	steps.
• I	can	climb	forever!	



Example	#1
Prove	that	the	number	of	
loop	iterations	is

x := 0;
for i=1 to N do
for j=1 to i do

x := x + 3;
return x;

𝑛 ∗ (𝑛 + 1)
2



(Extra	room	for	notes)



Example	#2:	
Prove	that			1	+	2	+	4	+	8	+	…	+	2n =	2n+1 - 1



(Extra	room	for	notes)



Useful	Mathematical	Property!

You’ll	use	it	or	see	it	again	before	the	end	of	CSE	373.

(2) =
+

),-

2+./ − 1



Powers	of	2

• A	bit	is	0	or	1	(just	two	different	“letters”	or	“symbols”)
• A	sequence	of	n bits	can	represent	2n distinct	things

(For	example,	the	numbers	0	through	2n-1)
• 210 is	1024	(“about	a	thousand”,	kilo	in	CSE	speak)
• 220 is	“about	a	million”,	mega	in	CSE	speak
• 230 is	“about	a	billion”,	giga in	CSE	speak

Java:	an	int is	32	bits	and	signed,	so	“max	int”	is	“about	2	billion”
a	long is	64	bits	and	signed,	so	“max	long”	is	263-1



Which	means…

You	could	give	a	unique	id	to…
• Every	person	in	the	U.S.	with	29	bits
• Every	person	in	the	world	with	33	bits
• Every	person	to	have	ever	lived	with	38	bits	(estimate)
• Every	atom	in	the	universe	with	250-300	bits

So	if	a	password	is	128	bits	long	and	randomly	generated,	
do	you	think	you	could	guess	it?



Example	#3:	(Parody)	Reverse	Induction!
Proof	by	Reverse	Induction	That	You	Can	Always	Cage	a	Lion:

Let	n	=	number	of	lions

Base	Case:	There	exists	some	countable,	arbitrarily	large	value	of	M	such	that	
when	n	=	M,	the	lions	are	so	packed	together	that	it's	trivial	to	cage	one.
IHOP:	Assume	this	is	also	true	for	n	=	k.

Inductive	Step:	Then	for	n	=	k-1,	release	a	lion	to	reduce	the	problem	to	the	case	
of	n	=	k,	which	by	the	IHOP	is	true.

QED	:)

Fun	fact:	Reverse	induction	is	a	thing!	The	math	part	of	the	above	is	actually	correct.


