CSE 373: Data Structures and Algorithms

Lecture 2: Wrap up Queues, Asymptotic Analysis, Proof
by Induction

Instructor: Lilian de Greef
Quarter: Summer 2017

Today:

* Announcements

* Wrap up Queues

* Begin Asymptotic Analysis: Big-O
* Proof by Induction

Announcement: Office Hours

* Announced! See course webpage for times

* Most held in 3" floor breakouts in CSE (whiteboards near stairs)

e Lilian’s additional “actual office” office hours
e CSE 220 (a more private environment)
e During listed times

* And by appointment! (email me >24 hours ahead of time with several times
that work for you)

 Come talk to me about anything! (feedback, grad school, Ultimate Frisbee, life
problems, whatever)

Announcement: Sections

* When & where: listed on course webpage
 What: TA-led...

* Review sessions of course material
* Practice problems
* Question-answering

* Optional, but highly encouraged!
4

| wouldn't have passed 332 (Data
Structures and Parallelism) without
regularly going to section! -viad (a)

_

Other Announcements

e Homework 1 is out
* On material covered in Lecture 1

e Go forth!
 ...or at least get Eclipse set up today.

* Only required course reading:
* 10 pages, easy read on commenting style
* Due beginning of class on Monday

e July 3
* Not an official UW holiday (sorry guys)

e But I'm declaring it an unofficial holiday!
Go enjoy a 4-day July 4t weekend

University Holidays

Classes are not in session on the following holidays:
SUMMER 2017

Full-term A-term B-term

July 4, 2017 July 4, 2017

Independence Day | Independence Day

o S~
y

—
—

Finishing up Queues

Let’s resolve that cliff-hanger!

Last time, we left off at a cliff hanger...

Y Group vote: Correct code for dequeue():

D"E’D When pollis active, respond at PollEv.com/cse373
D Text CSE373 to 22333 once to join

50%7
40%
30%:-
20%+
10%-

0%:-

If we can assume the queue is not empty, how can we implement
dequeue()? sizel 0

e‘%‘ uf —Crbn*:s._z,g-l»*

O\LbLY “—rr ownt +—1—'[

Public E dequeue () { L \
Yown-t = Si12¢

size—--; Handles aase rear

E e = array[front]; ‘”kfﬁ;_ig“*is o ;
m
<Your code here!> o and of : &: QS“'
. +he ayra N ALY gty
return e; 4 i arv oy

ont++; C» for (int 1 = 0; 1 < rear; 1i++) {

if (front == array.length) array[1] = array[i+1]
front = 0; }
front++;
1f (front == array.length)
B) rear = rear-1; front = 0;

if (rear < 0)
rear = array.length-1; D) None of these are correct

If we can assume the array is not full, how can we implement

size-1 0

enqueue(E e)?

B)

Public enqueue(E e) {

<Your code here!> cime as with

size++;

rear++,;

if (rear ==
rear = 0;

arrayl[rear]

rear++;
array|[rear]

LY § " -
’(roV\-{' s c‘ll wewne -

handle s

<

array.length)

S

S

reayr
2w d

rear

cCase of

be at ‘Q‘L\L

o0 A vy

C) for (int i=front; i<rear; 1i++)
array[1] = array[i+1]

}
arrayl[rear] = e;
rear++,;

None of these are correct

{

Ifwe_can assume the array is not full, how can we implement

size-1 0

enqueue(E e)?

Public enqueue (E e)

<Your code herel>

size++;
}
front
A) rear++; C) for (int i=front; i<rear; i++) {
rear = 0; } |
arrayl[rear] = e; array|[rear] = e;

rear++,;

B) rear++;
array[rear] = e; D) None of these are correct

-:_E.V\themins 0 @ '(Mll anaTZ; @% G%
Lant -

yeay
o\ (3' 3‘[“oos 41 < Q(
/ / /
7.3 ‘O C ‘\ (/\ \ \ \
:’\\ t [0“ e U lz B s ‘C\l;\w\lﬂ}
AN
Lot (el Note —ha-+ aoutl want o MoVL/er 'Crbl’\"L

Lo e at wndaox=0 oand rear Aworo\lv\sy

(\J\)ll\\/‘ TYY w\‘l'LoV\-‘f AO\V\S So o«v\é

DVGNW {V\ C\rck,\\gu/ ”cbrw\: Lnnr;‘ho_ oL+t LAJL\A% wwasg \v\ __L(,\L O\A

ﬁuumuQ. AVAN ’EL\L. VA AND ?D\&U\-e, !>

OlA Alrmy l

nst the suwme &g
- Aave

Between arrays and linked-lists which one is the fastest at
engueue, dequeue, and seeKthElement operations? (yhether worst-

CAS e AVAY

(where seeKthElement lets you peek at the kth element in the stack) avernag wn athens

W 6
——kl'_L /golo ,,
Fastest: enqueue dequeue seeKthElement
A) Arrays Linked-Lists Neither
QNbfk‘Ql VV\Q“\’L\OJ"
B) Linked-lists Neither Neither (s not pavt
of Rue ne AbT
Linked-lists Neither Arrays T would ot
zyf\vec't W

D) They’re all the same ~o ave oF

Which one’s better?

Arrays Linked-lists
» Could t olamemnt M‘ @ Cannst —t “Fall “'V\Q\VULZA 1o vesize
ML;.EZV ndex ke (€ necded) LS
o Uses (oss M-ow\ory S?QQ“ (ke d sf rodes [‘—H\“Fowftzi
Per clemenct e b e %
an VI (ol
CE:"*Q(W
A e ot Sl Qwuj
(‘0\771 w
Bj’\"\'\'l’\ [] L] | l ¢ (Dozsv\if Waste nininge dy TPrce

D)

— i
(wosted spece) \(ju

Trade-offs!

* The ability to choose wisely between trade-offs is why it’s important
to understand underlying data structures.

e Common Trade-offs
* Time vs space
* One operation’s efficiency vs another
* Generality vs simplicity vs performance

Asymptotic Analysis

Algorithm Analysis

* Why: to help choose the right algorithm or data structure for the job
e Often in asymptotic terms
Lelhaviovy as &R Vﬂ\w'b a\rr%cl«v& o

* Most common way: Big-O Notation

* General idea: N\&L’G{/\Lm{c‘\\ MW/(J([c(j\/\\/_z(J—LSCY(LP(Vj
’f[f\a/ LDX/\’\A\/[O\/ o/C Lo Lo (ovxj A /G/\m etier

Talus ~e vun (n A e Q‘smrﬂ” e N

A common way to describe “worst-case running time”

Example #1: g

The barn is an array of Cows, excitement is an integer, and
Cow.addHat () runs in constant time.

println () ;

println () ;

excltement++;

for (int 1=0; 1<barn.length; 1++) {
Cow cow = barn[i];
cow.addHat () ;e

}

Let's assume that one line of code takes 1 "unit of time" to run
This is not always true, i.e. calls to non-constant-time methods)

Important! Always begin
by specifying what “n” is!

(or “x”or “y” or whatever letter)

N

/

Example #1:
— println("The allen 1s visiting!"); — 1
— println("Party time!"); A+
exclitement++; q -

— for (int i=0; i<barn.length; i++) { —

Cow cow = barn[i]; —— 4 4

cow.addHat () ; \

S

oonsta it

/ X
{?S’+‘QZV“ klAmTfS ol?’HﬁAﬁ — (t>(AV\ N)

e Can a\‘cob«"’
B A

Example #2: Your turn! 1= tpeorle in SpoksTlesm

— for (Person player: sportsTeam) {
: . C,ﬁ /\k
—> player.smile();
_ for (Person teamMate: sportsTeam) { "
— player.say (’Good game!"); — C+
player.highFive (teamMate) ; ’~/S_

(e (e TG ot

Assume that the above Person method calls run in constant time

\

I

