
Instructor:	Lilian	de	Greef
Quarter:	Summer	2017

CSE	373:	Data	Structures	and	Algorithms
Lecture	2:	Wrap	up	Queues,	Asymptotic	Analysis,	Proof	

by	Induction



Today:

•Announcements
•Wrap	up	Queues
•Begin	Asymptotic	Analysis:	Big-O
•Proof	by	Induction



Announcement:	Office	Hours

• Announced!	See	course	webpage	for	times
• Most	held	in	3rd floor	breakouts	in	CSE	(whiteboards	near	stairs)
• Lilian’s	additional	”actual	office”	office	hours
• CSE	220	(a	more	private	environment)
• During	listed	times
• And	by	appointment!	(email	me	>24	hours	ahead	of	time	with	several	times	
that	work	for	you)
• Come	talk	to	me	about	anything!	(feedback,	grad	school,	Ultimate	Frisbee,	life	
problems,	whatever)



Announcement:	Sections
• When	&	where:	listed	on	course	webpage
• What:	TA-led…
• Review	sessions	of	course	material
• Practice	problems
• Question-answering

• Optional,	but	highly	encouraged!

I	wouldn't	have	passed	332	(Data	
Structures	and	Parallelism)	without	
regularly	going	to	section!	– Vlad	(TA)



Other	Announcements

• Homework	1	is	out
• On	material	covered	in	Lecture	1
• Go	forth!
• …or	at	least	get	Eclipse	set	up	today.

• Only	required	course	reading:
• 10	pages,	easy	read	on	commenting	style
• Due	beginning	of	class	on	Monday

• July	3rd
• Not	an	official	UW	holiday	(sorry	guys)
• But	I’m	declaring	it	an	unofficial	holiday!
Go	enjoy	a	4-day	July	4th weekend

!🎉



Finishing	up	Queues
Let’s	resolve	that	cliff-hanger!



Last	time,	we	left	off	at	a	cliff	hanger…



If	we	can	assume	the	queue	is	not	empty,	how	can	we	implement	
dequeue()?

Public E dequeue() {
size--;
E e = array[front];
<Your code here!>
return e;

}

front++;
if (front == array.length)

front = 0;

rear = rear-1;
if (rear < 0)

rear = array.length-1;

for (int i = 0; i < rear; i++) {
array[i] = array[i+1]

}
front++;
if (front == array.length)

front = 0;

None	of	these	are	correct

A)

B)

C)

D)

0
1

2

size-1

i

h
g

f e
front

rear



If	we	can	assume	the	array	is	not	full,	how	can	we	implement	
enqueue(E	e)?

Public enqueue(E e) {
<Your code here!>
size++;

}

rear++;
array[rear] = e;

for (int i=front; i<rear; i++) {
array[i] = array[i+1]

}
array[rear] = e;
rear++;

None	of	these	are	correct
B)

C)

D)

0
1

2

size-1

i

h
g

f e
front

rear

rear++;
if (rear == array.length)

rear = 0;
array[rear] = e;

A)



If	we	can	assume	the	array	is	not	full,	how	can	we	implement	
enqueue(E	e)?

Public enqueue(E e) {
<Your code here!>
size++;

}

rear++;
array[rear] = e;

for (int i=front; i<rear; i++) {
array[i] = array[i+1]

}
array[rear] = e;
rear++;

None	of	these	are	correct
B)

C)

D)

0
1

2

size-1

i

h
g

f e
front

rear

rear++;
if (rear == array.length)

rear = 0;
array[rear] = e;

A)





Between	arrays	and	linked-lists	which	one	*always*	is	the	fastest	at	
enqueue,	dequeue,	and	seeKthElement operations?	
(where	seeKthElement lets	you	peek	at	the	kth	element	in	the	stack)

Fastest: enqueue dequeue seeKthElement

A) Arrays Linked-Lists Neither

B) Linked-lists Neither Neither

C) Linked-lists Neither Arrays

D) They’re	all	the	same



Which	one’s	better?

Arrays Linked-lists



Trade-offs!

• The	ability	to	choose	wisely	between	trade-offs	is	why	it’s	important	
to	understand	underlying	data	structures.
• Common	Trade-offs
• Time	vs	space
• One	operation’s	efficiency	vs	another	
• Generality	vs	simplicity	vs	performance	



Asymptotic	Analysis
Oh	ho!	The	Big-O!



Algorithm	Analysis

• Why:	to	help	choose	the	right	algorithm	or	data	structure	for	the	job
• Often	in	asymptotic terms

• Most	common	way: Big-O	Notation
• General	idea:

• A	common	way	to	describe	“worst-case	running	time”



Example	#1:
The	barn is	an	array	of	Cows,	excitement	is	an	integer,	and	
Cow.addHat()runs	in	constant	time.

println("The alien is visiting!");
println("Party time!");
excitement++;
for (int i=0; i<barn.length; i++) {

Cow cow = barn[i];
cow.addHat();

}

Let's	assume	that	one	line	of	code	takes	1	"unit	of	time"	to	run
This	is	not	always	true,	i.e.	calls	to	non-constant-time	methods)

Important!	Always	begin	
by	specifying	what	“n”	is!
(or	“x”or “y”	or	whatever	letter)



Example	#1:
println("The alien is visiting!");
println("Party time!");
excitement++;
for (int i=0; i<barn.length; i++) {

Cow cow = barn[i];
cow.addHat();

}



Example	#2:	Your	turn!

for (Person player: sportsTeam) {
player.smile();
for (Person teamMate: sportsTeam) {

player.say(”Good game!");
player.highFive(teamMate);

}

Assume	that	the	above		Person method	calls	run	in	constant	time


