CSE 373: Data Structures and Algorithms

Lecture 2: Wrap up Queues, Asymptotic Analysis, Proof
by Induction

Instructor: Lilian de Greef
Quarter: Summer 2017



Today:

* Announcements

* Wrap up Queues

* Begin Asymptotic Analysis: Big-O
* Proof by Induction



Announcement: Office Hours

* Announced! See course webpage for times

* Most held in 3" floor breakouts in CSE (whiteboards near stairs)

e Lilian’s additional “actual office” office hours
e CSE 220 (a more private environment)
e During listed times

* And by appointment! (email me >24 hours ahead of time with several times
that work for you)

 Come talk to me about anything! (feedback, grad school, Ultimate Frisbee, life
problems, whatever)



Announcement: Sections

* When & where: listed on course webpage
 What: TA-led...

* Review sessions of course material
* Practice problems
* Question-answering

* Optional, but highly encouraged!
4

| wouldn't have passed 332 (Data
Structures and Parallelism) without
regularly going to section! -viad (a)
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Other Announcements

e Homework 1 is out
* On material covered in Lecture 1

e Go forth!
 ...or at least get Eclipse set up today.

* Only required course reading:
* 10 pages, easy read on commenting style
* Due beginning of class on Monday

e July 3
* Not an official UW holiday (sorry guys)

e But I'm declaring it an unofficial holiday!
Go enjoy a 4-day July 4t weekend

University Holidays

Classes are not in session on the following holidays:
SUMMER 2017

Full-term A-term B-term

July 4, 2017 July 4, 2017

Independence Day | Independence Day
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Finishing up Queues

Let’s resolve that cliff-hanger!



Last time, we left off at a cliff hanger...

Y Group vote: Correct code for dequeue():

D"E’D When pollis active, respond at PollEv.com/cse373
D Text CSE373 to 22333 once to join
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If we can assume the queue is not empty, how can we implement
dequeue()? sizel 0
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Public E dequeue () { L \
Yown-t = Si12¢

size—--; Handles aase rear

E e = array[front]; ‘”kfﬁ;_ig“*is o ;
m
<Your code here!> o and of : &: QS“'
. +he ayra N ALY gty
return e; 4 i arv oy

ont++; C» for (int 1 = 0; 1 < rear; 1i++) {

if (front == array.length) array[1] = array[i+1]
front = 0; }
front++;
1f (front == array.length)
B) rear = rear-1; front = 0;

if (rear < 0)
rear = array.length-1; D) None of these are correct



If we can assume the array is not full, how can we implement

size-1 0

enqueue(E e)?

B)

Public enqueue(E e) {

<Your code here!> cime as with

size++;

rear++,;

if (rear ==
rear = 0;

arrayl[rear]

rear++;
array|[rear]
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C) for (int i=front; i<rear; 1i++)
array[1] = array[i+1]

}
arrayl[rear] = e;
rear++,;

None of these are correct
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Ifwe_can assume the array is not full, how can we implement

size-1 0

enqueue(E e)?

Public enqueue (E e)

<Your code herel>

size++;
}
front
A) rear++; C) for (int i=front; i<rear; i++) {
rear = 0; } |
arrayl[rear] = e; array|[rear] = e;

rear++,;

B) rear++;
array[rear] = e; D) None of these are correct
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Between arrays and linked-lists which one is the fastest at
engueue, dequeue, and seeKthElement operations?  (yhether worst-

CAS e AVAY

(where seeKthElement lets you peek at the kth element in the stack) avernag wn athens
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Which one’s better?
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Trade-offs!

* The ability to choose wisely between trade-offs is why it’s important
to understand underlying data structures.

e Common Trade-offs
* Time vs space
* One operation’s efficiency vs another
* Generality vs simplicity vs performance



Asymptotic Analysis



Algorithm Analysis

* Why: to help choose the right algorithm or data structure for the job
e Often in asymptotic terms
Lelhaviovy as &R Vﬂ\w'b a\rr%cl«v& o

* Most common way: Big-O Notation

* General idea: N\&L’G{/\Lm{c‘\\ MW/(J( [c(j\/\\/\_z( J—LSCY(LP(Vj
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A common way to describe “worst-case running time”



Example #1: g

The barn is an array of Cows, excitement is an integer, and
Cow.addHat () runs in constant time.

println ( ) ;

println ( ) ;

excltement++;

for (int 1=0; 1<barn.length; 1++) {
Cow cow = barn[i];
cow.addHat () ;e

}

Let's assume that one line of code takes 1 "unit of time" to run
This is not always true, i.e. calls to non-constant-time methods)

Important! Always begin
by specifying what “n” is!

(or “x”or “y” or whatever letter)

N
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Example #1:
— println("The allen 1s visiting!"); — 1
— println("Party time!"); A+
exclitement++; q -

— for (int i=0; i<barn.length; i++) { —

Cow cow = barn[i]; —— 4 4

cow.addHat () ; \
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Example #2: Your turn! 1= tpeorle in SpoksTlesm

— for (Person player: sportsTeam) {
: . C,ﬁ /\k
—> player.smile();
_ for (Person teamMate: sportsTeam) { "
— player.say (’Good game!"); — C+
player.highFive (teamMate) ; ’~/S_

(e (e TG ot

Assume that the above Person method calls run in constant time
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