CSE 373: Data Structures and Algorithms

Lecture 1: Introduction, ADTs, Stacks & Queues

Instructor: Lilian de Greef
Quarter: Summer 2017

Welcome!

Today’s Structure:

* Introductions and course mechanics

e Start material

e Abstract Data Types (ADTs)
e Stacks
* Queues

Lilian de Greef

e CSE PhD Student

* Working with Shwetak Patel on health
applications of CS

* Interests & Hobbies
* Ultimate Frisbee
* Piano
* Hiking / backpacking
* Some TV shows

ldegreeflcs.washington.edu

cse373-staff@cs.washington.edu

Kyle Thayer

Ben Jones

VIad Shamalov

Anupam Gupta

Junior - Mqgjoring in CSE and HCDE.
Hobbies: Watching Movies, Sleeping.

Interests: Al, Programming Languages, Data Mining.

vV v v v

Why TA? Because it's a lot of fun and also because | get to meet a lot of
new, fun, people and talk to them about CS (which is awesomell)

» See you all around!

Course Logistics

Classroom environment

Laptop policy
Lectures starting promptly at 10:50
Will have discussions in class

e With neighbors

* With entire class
* Hence, pack yourselves to the front and sit together

Somewhere we can feel comfortable making mistakes
* One of the best ways to learn!

General Logistics

* Website: http://cs.washington.edu/373
* Mailing list: cse373a_17su@uw.edu

* Piazza discussion board

* Textbook: Weiss 3rd Edition in Java

 Computers for homework assignments

* College of Arts & Sciences Instructional Computing Lab:
http://depts.washington.edu/aslab/

e Or your own machine

* Java
e Used for programming assignments
« Recommended environment: Eclipse

Sections & Office Hours

* TBA by Tuesday, in class on Wednesday
e Lilian’s office hours (for just today):

e 1:00 - 2:00pm

 CSE 220

Contact

e Use Piazza!
* https://piazza.com/washington/summer2017/cse373
* Don’t post code or solutions publicly

* For questions with code, solutions, grades, etc., make private posts to
instructors

e Can post anonymously

* Email me
* For "Lilian's eyes only" concerns
* I'll reply within 24 hours
* Put [CSE 373] at beginning of subject

Collaboration and Academic Integrity

DON'T CHEAT!

Seriously, read the policy online.

Using PollEverywhere

* How:
* You anonymously vote on multiple choice questions in lecture
* Via text messaging (SMS) or web browser (don’t need to buy a clicker)*

* Why:
* A way for me to check in
e A way for you to check in
* Research shows using Peer Instruction with polling improves learning!

* If access to SMS or a web browser in class is a challenge for you, please come talk to me

Using PollEverywhere: for Peer Instruction

* Format
1. I'll pose a question
2. Vote individually, invisible to class
3. Discuss!

4. Group vote

* Discussion is key!
* "Just getting the right answer" is not enough - need to be able to
explain/argue for it!
e Testing yourself helpful ("right answer"), but learning happens during
discussion

Take part in class-wide discussion!

* | know, can be intimidating

* Your questions and explanations are critical for fellow students'
learning

* If you have a question, it’s likely that others have the same one.
You're not alone!

Let’s get started with
Data Structures!

Expectations: Basic Understanding of

* Conditionals * Arrays
* Loops Singly linked lists
* Methods e Simple binary trees

* Fundamentals of defining classes ¢ Recursion

and inheritance * A few sorting and searching

 Basic algorithm analysis (e.g. algorithms
O(n) vs O(n"2) etc.)

What is a Data Structure?

What is a Data Structure?

What should | put
my sandwich in?

The crux of this course

e Understanding your data structures and algorithms to choose the
right one for the job.

e Fundamental CS skill

 After this course, | want you to be able to
* Make good design choices
* Justify and communicate design decisions

Terminology

* Abstract Data Type (ADT)

 Mathematical description of “thing”
* Meaning
* Operations

* No implementation details

 Data structure

* Specific way to implement ADT
(organization of data & family of
algorithms)

Terminology

 Algorithm

* Language-independent
description of step-by-step
process

* Implementation of a data
structure

 Specificimplementation in a
specific language

Terminology

Interface to an ADT in particular language is said to be the Application
Programmer Interface (API) for the ADT in that language

® © ® [S] overview (Java Platform SE 8) X Lilian

& C | & Secure https://docs.oracle.com/javase/8/docs/api/ Y

Java™ Platform
PACKAGE CLASS USE TREE DEPRECATED INDEX HELP Standard Ed. 8

Java™ Platform
Standard Ed. 8

All Classes All Profiles PREV NEXT FRAMES NO FRAMES
Packages .
_ . Java™ Platform, Standard Edition 8
va. - -
lava.at API Specification
java.awt.color
java.awt.datatransfer This document is the API specification for the Java™ Platform, Standard Edition.

|_iava.awt.dnd
See: Description

AbstractAction

AbstractAnnotationValueVisitor6 Profiles
AbstractAnnotationValueVisitor7
AbstractAnnotationValueVisitor8 « compactl
AbstractBorder . compact2
AbstractButton « compact3

AbstractCellEditor
AbstractChronology
AbstractCollection
AbstractColorChooserPanel

AbstractDocument _

AbstractDocument.AttributeContext

AbstractDocument.Content Package Description
AbstractDocument.ElementEdit java.applet
AbstractElementVisitoré
AbstractElementVisitor7

AbstractElementvVisitor8 java.awt Contains all of the classes for creating user interfaces and for
AbstractExecutorService e e e T e i e e

Provides the classes necessary to create an applet and the classes
an applet uses to communicate with its applet context.

Computer Science example:
Stacks!

Stack ADT

* Meaning

* Operations

-

Stack data structures

* Specific kinds of stacks:

* Example implementation: library “java.util.Stack”

Stack Practice!

* As an array

. hew Stack

. push (©)
.push(i?)
. pop ()

e As a linked list

S w N

Stacks are used a lot!

 Undo / redo

* Back / forward on browsers
* Recursion

* Matching braces

{ ((@a+b)*c—(d/(e+1))]}

e ... and much more!

Another example: Queues!

Queue ADT

* Meaning Back Front

v v
* Operations

Queue Data Structure: Linked List

b > C » d e

/ \

front rear

Queue Data Structure: Linked List

b > C » d > e » f
! !
front rear
// Basic idea only! What if queue is empty?
enqueue (x) { * Enqueue?
rear.next = Node (x) ;
 Dequeue?
rear = rear.next; _
} Can you find the kt"

— element in the queue?
// Basic idea only! .
dequeue () { * Can list be full?

x = front.item; * How to test for empty?
front = front.next;

 What is the complexity of

®7 the operations?

Queue Data Structure: Array

0 size-1
blc|d|e|f
| |
front rear

What happens when we dequeue several times, and front catches up to rear?

Queue Data Structure: Array

0 size-1

|

front rear

Hmmm...
How do we enqueue to the rear now?

Queue Data Structure: Circular Array!

size-1 0
1 View the array as circular and
allow both front and rear to

“ 2 advance through (around)

the array

We wouldn’t need to move

“ elements for enqueues and
ﬁ dequeues!

If we can assume the queue is not empty, how can we implement

dequeue()?

Public E dequeue ()

size——;

E e = array[front];

<Your code herel>
return e;

A) front++;
1f (front == array.length)
front = 0;
B) rear = rear-1;

if (rear < 0)

rear = array.length-1;

C)

rear

for (int 1 = 0; 1 < rear; 1i++)
array[1] = array[i+1]

}

front++;

1f (front == array.length)
front = 0;

None of these are correct

{

(Notes for yourself)

If we can assume the array is not full, how can we implement

size-1 0

enqueue(E e)?

Public enqueue(E e) {

rear

<Your code herel!>

size++;
}
A) rear++; C) for (int i=front; i<rear; i++) {
rear = 0; }
arrayl[rear] = e; array|[rear] = e;

rear++,;

B) rear++;
array[rear] = e; D) None of these are correct

(Notes for yourself)

Between arrays and linked-lists which one *always* is the fastest at
engqueue, dequeue, and seeKthElement operations?

(where seeKthElement lets you peek at the kth element in the stack)

Fastest: enqueue dequeue seeKthElement

A) Arrays Linked-Lists Neither
B) Linked-lists Neither Neither
C) Linked-lists Neither Arrays

D) They’re all the same

(Notes for yourself)

Which one’s better?

Arrays Linked-lists

Trade-offs!

* The ability to choose wisely between trade-offs is why it’s important
to understand underlying data structures.

e Common Trade-offs
* Time vs space
* One operation’s efficiency vs another
* Generality vs simplicity vs performance

