CSE 373: Data Structures and Algorithms

Lecture 1: Introduction, ADTs, Stacks & Queues

Instructor: Lilian de Greef
Quarter: Summer 2017

Welcome!

Today’s Structure:

* Introductions and course mechanics

e Start material

e Abstract Data Types (ADTs)
e Stacks
* Queues

Selt Introductions

(Your homework 0!)

Lilian de Greef

e CSE PhD Student

* Working with Shwetak Patel on health
applications of CS

* Interests & Hobbies
* Ultimate Frisbee
* Piano
* Hiking / backpacking
* Some TV shows

ldegreeflcs.washington.edu

cse373-staff@cs.washington.edu

Kyle Thayer

Ben Jones

VIad Shamalov

Dorothy

e Senior (undergrad) in Computer Science and ACMS

e TAIng this quarter because | loved this class both when |
took it and when I've been a TA for 373 in the past

e Some of my hobbies are reading, exploring Seattle, and
photography

Anupam Gupta

Junior - Mqgjoring in CSE and HCDE.
Hobbies: Watching Movies, Sleeping.

Interests: Al, Programming Languages, Data Mining.

vV v v v

Why TA? Because it's a lot of fun and also because | get to meet a lot of
new, fun, people and talk to them about CS (which is awesomell)

» See you all around!

Course Logistics

Classroom environment

Laptop policy
Lectures starting promptly at 10:50
Will have discussions in class

e With neighbors

* With entire class
* Hence, pack yourselves to the front and sit together

Somewhere we can feel comfortable making mistakes
* One of the best ways to learn!

General Logistics

* Website: http://cs.washington.edu/373
* Mailing list: cse373a_17su@uw.edu

* Piazza discussion board

* Textbook: Weiss 3rd Edition in Java

 Computers for homework assignments

* College of Arts & Sciences Instructional Computing Lab:
http://depts.washington.edu/aslab/

e Or your own machine

* Java
e Used for programming assignments
« Recommended environment: Eclipse

Sections & Office Hours

* TBA by Tuesday, in class on Wednesday
e Lilian’s office hours (for just today):

e 1:00 - 2:00pm

 CSE 220

Contact

e Use Piazza!
* https://piazza.com/washington/summer2017/cse373
* Don’t post code or solutions publicly

* For questions with code, solutions, grades, etc., make private posts to
instructors

e Can post anonymously

* Email me
* For "Lilian's eyes only" concerns
* I'll reply within 24 hours
* Put [CSE 373] at beginning of subject

Collaboration and Academic Integrity

DON'T CHEAT!

Seriously, read the policy online.

Using PollEverywhere

* How:
* You anonymously vote on multiple choice questions in lecture
* Via text messaging (SMS) or web browser (don’t need to buy a clicker)*

* Why:
* A way for me to check in
e A way for you to check in
* Research shows using Peer Instruction with polling improves learning!

* If access to SMS or a web browser in class is a challenge for you, please come talk to me

Using PollEverywhere: for Peer Instruction

* Format
1. I'll pose a question
2. Vote individually, invisible to class
3. Discuss!

4. Group vote

* Discussion is key!
* "Just getting the right answer" is not enough - need to be able to
explain/argue for it!
e Testing yourself helpful ("right answer"), but learning happens during
discussion

Take part in class-wide discussion!

* | know, can be intimidating

* Your questions and explanations are critical for fellow students'
learning

* If you have a question, it’s likely that others have the same one.
You're not alone!

Let’s get started with
Data Structures!

Expectations: Basic Understanding of

* Conditionals * Arrays
* Loops Singly linked lists
* Methods e Simple binary trees

* Fundamentals of defining classes ¢ Recursion

and inheritance * A few sorting and searching

 Basic algorithm analysis (e.g. algorithms
O(n) vs O(n"2) etc.)

What is a Data Structure?

* On super high level: a container for data

What is a Data Structure?

What should | put
my sandwich in?

* On super high level: a container for data
* Real-world examples of containers:

&

e 188U 107737 9
J 4300

The crux of this course

e Understanding your data structures and algorithms to choose the
right one for the job.

e Fundamental CS skill

 After this course, | want you to be able to
* Make good design choices
* Justify and communicate design decisions

Terminology

* Abstract Data Type (ADT)
* Mathematical description of “thing’
* Meaning
* Operations
* No implementation details

)

 Data structure

* Specific way to implement ADT
(organization of data & family of
algorithms)

e.g. bag:

Meaning of bag:
flexible container with an
opening at the top

Some of its operations:
open, close, insert, take out

e.g. bag:

* Different kinds of bags: with
handles, without handles,
with clasp, with drawstring,
with zip-lock, etc.

* Isone kind of bag the best?

Terminology

 Algorithm

* Language-independent
description of step-by-step
process

* Implementation of a data
structure

 Specificimplementation in a
specific language

e.g. Algorithm for closing a zip-lock bag
1. Bring ends of opening together
2. Pressoneend
3. Run hand along top to seal

e.g. bag:
* Canimplement in paper,
plastic, canvas, leather, etc.

Terminology

Application Programmer Interface (API):
Implementation of an ADT in particular language

ece E Overview (Java Platform SE8) x '\ Lilian
& C | & Secure https://docs.oracle.com/javase/8/docs/api/ &
Java™ Platform

PACKAGE CLASS USE TREE DEPRECATED INDEX HELP Standard Ed. 8

All Classes All Profiles PREV NEXT FRAMES NO FRAMES

Packages .

| Java™ Platform, Standard Edition 8

java.applet g .

Java. ot API Specification

java.awt.color

java.awt.datatransfer This document is the API specification for the Java™ Platform, Standard Edition.

iava.awt.dnd

b

See: Description

AbstractAction
AbstractAnnotationValueVisitor6 Profiles
AbstractAnnotationValueVisitor7
AbstractAnnotationValueVisitor8

AbstractBord « compactl
Abzt:ZEteﬁ&:r: * compact2
« compact3

AbstractCellEditor
AbstractChronology
AbstractCollection
AbstractColorChooserPanel

AbstractDocument -
AbstractDocument.AttributeContext

AbstractDocument.Content Package Description
AbstractDocument.ElementEdit java.applet
AbstractElementVisitoré
AbstractElementVisitor7
AbstractElementVisitor8 java.awt
AbstractExecutorService

Provides the classes necessary to create an applet and the classes
an applet uses to communicate with its applet context.

Contains all of the classes for creating user interfaces and for

natinting aranhice anAd svmamac

Computer Science example:
Stacks!

Stack ADT

* Meaning
L I{: O (lmf‘(’—;wx —Ared - 6 u‘b)
* Operations

’FM§L\(\ —C oSt

~7er - size
el

— r§£mﬁ>+7

Stack data structures

* Specific kinds of stacks:

e Stacks using Arrays

 Stacks using Linked-lists

* Example implementation: library “java.util.Stack”

Stack Practice!

S w N

* As an array

. new Stack @ /]) l (/ 7

. push (©)
.push(i?)

. pop () . %E/ %&

N s Qg&

e As a linked list

Stacks are used a lot!

 Undo / redo

* Back / forward on browsers [/ (
* Recursion / /

: —t o f
 Matching braces (\Mfﬁ

{ ((@a+b)*c—(d/(e+1))]}

e ... and much more!

Another example: Queues!

Queue ADT

* Meaning Back Front
):)ﬁ O %K’Hh“—(ié ?’?«w—h
* Operations
T €N queve
- O(z OIU\Q’U\Q
e
,‘\gEW\r*V V\ﬂ‘k""* TM“&

- §F,l7_/€

Queue Data Structure: Linked List

\e @;fﬁ//’L\=c " d " e ’“’l?m

£ e

front rear

o~ 6(\,\,(,\,\2 (—C\ c\ﬁc“uwa(B

Queue Data Structure: Linked List

el
b > C > d > e > f /71 Li\
o

f f Ao (ea
front rear

// Basic idea only! What if queue is empty?
enqueue (x) { * Enqueue?

rear.next = Node (x) ;

 Dequeue?

rear = rear.next; _

} Can you find the kt"

— element in the queue?
// Basic idea only! .
dequeue () { * Can list be full?

x = front.item; * How to test for empty?
front = front.next;

 What is the complexity of

®7 the operations?

Queue Data Structure: Array
\>
0 / size-1

Ic()cdefa\

Can USe Rk 'm&z)%/?i =
insteadk 56 ogolclers front 2 rear: g 11 @
(sl P
Qf\g r y 2 1 T J/ N)
Kb\\é% @\%\2&\4\ /j gcox}b
Lok (Cav b

What happens when we dequeue several times, and front catches up to rear?

Queue Data Structure: Array

0 size-1

bic|d|e|f|g|h]|i

L I -
front r

2\n ?\/&Lu\{ <3>

Hmmm...
How do we enqueue to the rear now?

Queue Data Structure: Circular Array!

size-1 0
1 View the array as circular and
allow both front and rear to

“ 2 advance through (around)

the array

We wouldn’t need to move

“ elements for enqueues and
ﬁ dequeues!

If we can assume the queue is not empty, how can we implement

dequeue()?

Public E dequeue ()

size——;

E e = array[front];

<Your code herel>
return e;

A) front++;
1f (front == array.length)
front = 0;
B) rear = rear-1;

if (rear < 0)

rear = array.length-1;

C)

rear

for (int 1 = 0; 1 < rear; 1i++)
array[1] = array[i+1]

}

front++;

1f (front == array.length)
front = 0;

None of these are correct

{

