
Instructor:	Lilian	de	Greef
Quarter:	Summer	2017

CSE	373:	Data	Structures	and	Algorithms
Lecture	1:	Introduction,	ADTs,	Stacks	&	Queues



Welcome!	

Today’s	Structure:
• Introductions	and	course	mechanics
• Start	material
• Abstract	Data	Types	(ADTs)
• Stacks
• Queues



Self	Introductions
(Your	homework 0!)



Lilian	de	Greef

• CSE	PhD	Student
• Working	with	Shwetak Patel	on	health	
applications	of	CS
• Interests	&	Hobbies
• Ultimate	Frisbee
• Piano
• Hiking	/	backpacking
• Some	TV	shows

ldegreef@cs.washington.edu

cse373-staff@cs.washington.edu



Kyle	Thayer



Ben	Jones



Vlad	Shamalov



Dorothy
● Senior (undergrad) in Computer Science and ACMS
● TAing this quarter because I loved this class both when I 

took it and when I’ve been a TA for 373 in the past
● Some of my hobbies are reading, exploring Seattle, and 

photography





Course	Logistics



Classroom	environment

• Laptop	policy
• Lectures	starting	promptly	at	10:50
• Will	have	discussions	in	class

• With	neighbors
• With	entire	class
• Hence,	pack	yourselves	to	the	front	and	sit	together

• Somewhere	we	can	feel	comfortable	making	mistakes
• One	of	the	best	ways	to	learn!



General	Logistics

• Website:	http://cs.washington.edu/373
• Mailing	list:	cse373a_17su@uw.edu
• Piazza	discussion	board
• Textbook:	Weiss	3rd	Edition	in	Java	
• Computers	for	homework	assignments

• College	of	Arts	&	Sciences	Instructional	Computing	Lab:	
http://depts.washington.edu/aslab/

• Or	your	own	machine	
• Java	

• Used	for	programming	assignments
• Recommended	environment:	Eclipse



Sections	&	Office	Hours

• TBA	by	Tuesday,	in	class	on	Wednesday
• Lilian’s	office	hours	(for	just	today):
• 1:00	– 2:00pm
• CSE	220



Contact

• Use	Piazza!
• https://piazza.com/washington/summer2017/cse373
• Don’t	post	code	or	solutions	publicly
• For	questions	with	code,	solutions,	grades,	etc.,	make	private	posts	to	
instructors	
• Can	post	anonymously

• Email	me
• For	"Lilian's	eyes	only"	concerns
• I'll	reply	within	24	hours
• Put	[CSE	373]	at	beginning	of	subject



Collaboration	and	Academic	Integrity

DON’T	CHEAT!
Seriously,	read	the	policy	online.



Using	PollEverywhere

• How:
• You	anonymously	vote	on	multiple	choice	questions	in	lecture
• Via	text	messaging	(SMS)	or	web	browser	(don’t	need	to	buy	a	clicker)*

• Why:
• A	way	for	me	to	check	in
• A	way	for	you to	check	in
• Research	shows	using	Peer	Instruction	with	polling	improves	learning!

*	If	access	to	SMS	or	a	web	browser	in	class	is	a	challenge	for	you,	please	come	talk	to	me



Using	PollEverywhere:	for	Peer	Instruction

• Format
1. I'll	pose	a	question
2. Vote	individually,	invisible	to	class
3. Discuss!
4. Group	vote

• Discussion	is	key!
• "Just	getting	the	right	answer"	is	not	enough	- need	to	be	able	to	
explain/argue	for	it!
• Testing	yourself	helpful	("right	answer"),	but	learning happens	during	
discussion



Take	part	in	class-wide	discussion!

• I	know,	can	be	intimidating
• Your	questions	and	explanations	are	critical	for	fellow	students'	
learning
• If	you	have	a	question,	it’s	likely	that	others	have	the	same	one.	
You're	not	alone!



Let’s	get	started	with	
Data	Structures!
Today:	Abstract	Data	Types	(ADTs),	Stacks,	Queues



Expectations:	Basic	Understanding	of

• Conditionals
• Loops
• Methods
• Fundamentals	of	defining	classes	
and	inheritance
• Basic	algorithm	analysis	(e.g.	
O(n)	vs	O(n^2)	etc.)

• Arrays
• Singly	linked	lists
• Simple	binary	trees
• Recursion
• A	few	sorting	and	searching	
algorithms



What	is	a	Data	Structure?
• On	super	high	level:	a	container	for	data



What	is	a	Data	Structure?
• On	super	high	level:	a	container	for	data
• Real-world	examples	of	containers:

What	should	I	put	
my	sandwich	in?



The	crux	of	this	course

• Understanding	your	data	structures	and	algorithms	to	choose	the	
right	one	for	the	job.
• Fundamental	CS	skill
• After	this	course,	I	want	you	to	be	able	to
• Make	good	design	choices
• Justify	and	communicate	design	decisions



Terminology

• Abstract	Data	Type	(ADT)
• Mathematical	description	of	“thing”
• Meaning
• Operations

• No	implementation	details

• Data	structure
• Specific	way	to	implement	ADT	
(organization	of	data	&	family	of	
algorithms)

e.g.	bag:
Meaning	of	bag:

flexible	container	with	an	
opening	at	the	top

Some	of	its	operations:
open,	close,	insert,	take	out

e.g.	bag:
• Different	kinds	of	bags:	with	

handles,	without	handles,	
with	clasp,	with	drawstring,	
with	zip-lock,	etc.

• Is	one	kind	of	bag	the	best?



Terminology

• Algorithm
• Language-independent	
description	of	step-by-step	
process

• Implementation of	a	data	
structure
• Specific	implementation	in	a	
specific	language

e.g.	Algorithm	for	closing	a	zip-lock	bag
1. Bring	ends	of	opening	together
2. Press	one	end
3. Run	hand	along	top	to	seal

e.g.	bag:
• Can	implement	in	paper,	

plastic,	canvas,	leather,	etc.



Terminology
Application	Programmer	Interface	(API):	
Implementation	of	an	ADT	in	particular	language



Computer	Science	example:	
Stacks!



Stack	ADT

• Meaning

• Operations



Stack	data	structures

• Specific	kinds	of	stacks:

• Stacks	using	Arrays

• Stacks	using	Linked-lists

• Example	implementation:	library	“java.util.Stack”



Stack	Practice!

1. new Stack

2. push(☺)

3. push(☆)

4. pop()

• As	an	array

• As	a	linked	list



Stacks	are	used	a	lot!

• Undo	/	redo
• Back	/	forward	on	browsers
• Recursion
•Matching	braces

• … and	much	more!

{		(		(a	+	b)	*	c	– (d	/ (e	+	f))	}



Another	example:	Queues!



Queue	ADT

• Meaning

• Operations



Queue	Data	Structure:	Linked	List

b c d e

front rear



Queue	Data	Structure:	Linked	List
b c d e f

front rear

// Basic idea only!
enqueue(x) {
rear.next = new Node(x);
rear = rear.next;

}

// Basic idea only!
dequeue() {
x = front.item;
front = front.next;
return x;

}

• What	if	queue is	empty?
• Enqueue?
• Dequeue?	

• Can	you	find	the	kth
element	in	the	queue?
• Can	list be	full?
• How	to	test for	empty?
• What	is	the	complexity of	
the	operations?



Queue	Data	Structure:	Array

b c d e f
0 size	- 1

front rear

What	happens	when	we	dequeue several	times,	and	front catches	up	to	rear?



Queue	Data	Structure:	Array

b c d e f g h i
0 size	- 1

front rear

Hmmm…
How	do	we	enqueue to	the	rear	now?



Queue	Data	Structure:	Circular	Array!

View	the	array	as	circular and	
allow	both	front	and	rear to	
advance	through	(around)	
the	array

We	wouldn’t	need	to	move	
elements	for	enqueues and	
dequeues!

0
1

2

size-1

i

h
g

f e
front

rear



If	we	can	assume	the	queue	is	not	empty,	how	can	we	implement	
dequeue()?

Public E dequeue() {
size--;
E e = array[front];
<Your code here!>
return e;

}

front++;
if (front == array.length)

front = 0;

rear = rear-1;
if (rear < 0)

rear = array.length-1;

for (int i = 0; i < rear; i++) {
array[i] = array[i+1]

}
front++;
if (front == array.length)

front = 0;

None	of	these	are	correct

A)

B)

C)

D)

0
1

2

size-1

i

h
g

f e
front

rear


