

CSE	373	Summer	2017	
Due	5:00pm	on	Friday,	July	14th	

	

Pair-Programming	Opportunity	
For	this	assignment,	you	may	work	with	a	partner	through	pair-programming,	where	you	write	all	your	
code	together	as	two	people	at	one	keyboard.	Switch	off	regularly	to	spend	equal	time	in	the	roles	of	
the	“driver”	(who’s	typing)	and	the	“navigator”	(suggesting	what	to	type).	Working	on	any	part	of	the	
code	separately	would	be	a	violation	of	academic	integrity	and	considered	cheating.	Because	you	must	
be	in	the	same	physical	space	throughout	working	on	this	assignment,	choose	partnerships	and	plan	
schedules	accordingly,	and	start	early!	Should	you	choose	to	partner	up,	only	one	of	you	will	turn	in	the	
assignment.	Also	fill	out	this	catalyst	survey:	https://catalyst.uw.edu/webq/survey/ldegreef/336770	

Overview	
Your	task	is	to	write	a	general	tool	that	will	allow	you	to	maintain	one---directional	word	associations.	To	
do	so	you	will	be	implementing	a	TextAssociator,	which	maintains	word	associations	as	a	built---
from---scratch	HashTable of	WordInfo objects.	Your	final	implementation	will	be	a	self---resizing,	non---
generic	HashTable,	using	separate	chaining	as	a	collision	resolution.	

Once	you	have	completed	your	implementation	you	will	further	show	functionality	and	behavior	of	
your	TextAssociator	by	writing	client	code	that	leverages	your	collection	of	word---associations.	

You	have	been	given	skeleton	code	to	assist	you	in	the	design	and	structure	of	this	data	structure,	
however	many	design	choices	will	be	left	up	to	you.	

To	obtain	the	required	files,	in	your	eclipse	workspace:	
file	>>	import	>>	general	>>	Existing	Projects	into	Workspace	>>	Select	archive	file	>>	hw2_TextAssociator.zip	
	

Files	given	to	you:	
TextAssociator.java
TextAssociator	is	Dictionary	implemented	using	hashing	to	maintain	associations	between	Strings.	
TextAssociator	is	mainly	skeleton	code	for	you	to	implement.	You	are	to	use	an	array	of	
WordInfoSeparateChain	objects	to	maintain	your	hashing	structure	of	your	TextAssociator.	Certain	
methods	in	WordInfoSeparateChain	also	need	to	be	implemented.	

	
Thesaurus Client.java
ThesaurusClient	uses	your	TextAssociator	to	maintain	associations	between	words	and	their	synonyms.	
Included	in	the	provided	files,	you	will	find	simple_thesaurus.txt,	and	large_thesaurus.txt.	
These	two	files	specify	the	relationship	between	words	and	their	synonyms.	Each	line	has	a	list	of	comma---	
separated	words.	The	first	word	in	each	line	is	the	source	word,	and	the	remaining	words	on	that	line	are	
the	synonyms.	You	can	specify	which	thesaurus	file	you	want	to	use	by	updating	the	THESAURUS_FILE
class	constant.	

	
WordInfo. java
WordInfo	represents	a	relationship	between	a	source	String	and	a	collection	of	Strings	it	should	be	
associated	with.	This	class	is	fully	implemented	for	you.	

	

“Computer”	
“code”,	“laptop”	
“java”,	
“happiness”	

1) Implement	the	method	Stubs	in	WordInfoSeparateChain.java	
	

	
2) Implement	the	method	Stubs	in	TextAssociator.java	
	

Public	Methods	
public Text Associator() {
Constructor	for	a	new	TextAssociator.	This	initializes	all	required	fields.		
Design	Decision	#1:	What	should	the	starting	capacity	of	your	TextAssociator	be?	

	
public boolean addNewWord(String word) {
Adds	a	new	word to	the	TextAssociator.	If	the	word already	exists,	do	nothing	and	return	false.	Otherwise,	
add	it	and	return	true.	One	case	to	keep	in	mind	is	if	the	appropriate	index	in	the	array	index	doesn’t	yet	
contain	a	WordInfoSeparateChain;	then	it	needs	to	construct	a	new	separate	chain.	

	
public boolean addAssociation(String word, String association) {
Associates	the	given	word with	the	given	association. If	the	given	association	already	exists	with	the	
word,	or	if	the	word	does	not	already	exist	in	the	TextAssociator,	return	false.	Otherwise,	add	it	and	return	
true.	Associations	are	one	directional	(i.e.	add	an	association	from	word->association,	not	vice	versa).	

	
public boolean remove(String word) {
Remove	the	given	word	(and	subsequently	all	of	its	associations)	from	the	TextAssociator.	Return	true	if	it	
is	removed,	false	if	it	did	not	exist.	This	should	be	removing	an	entire	WordInfo	object	(not	just	an	
association).	

	
public Set< String> getAssociations(String word) {
Return	a	set	of	all	the	associations	from	the	given	word,	or	null	if	the	word	does	not	exist.	

	
	
	

Note:	You	may	add	other	methods	to	these	two	classes	as	you	see	fit.	Make	sure	the	visibility	of	these	methods	
(private,	public,	etc)	makes	sense.	

	
Note:	You	may	choose	to	use	Java’s	built-in	String	hashCode	or	write	your	own	hash	function.		

Public	Methods	

Adds	a	new	WordInfo	to	the	WordInfoSeparateChain.	If	the	WordInfo	already	exists,	you	should	do	nothing	
and	return	false.	Otherwise,	add	it	and	return	true.	

	

Remove	the	given	WordInfo	from	the	WordInfoSeparateChain.	Return	true	if	it	is	removed,	false	if	it	did	
not	exist.	This	should	remove	the	entire	WordInfo	object	

Implementation	Notes	
You	will	notice	that	the	public	interface	to	the	client	deals	strictly	with	Strings,	your	
WordInfoSeperateChain	stores	WordInfo	objects	behind	the	scenes.	It	will	be	your	job	to	convert	between	
Strings	and	WordInfo	objects	for	varying	method	calls.	

	
Your	TextAssociator	must	be	able	to	store	an	arbitrary	number	of	WordInfo	object.	Remember	that	
because	we	are	using	separate	chaining,	in	theory	we	would	never	have	to	resize	our	array.	However,	as	
discussed	in	class,	having	a	large	load	factor	can	start	to	degrade	your	runtime	for	many	operations.	When	
the	load	factor	for	your	TextAssociator	reaches	a	certain	threshold,	you	should	resize	your	internal	Array.	
Design	Decision	#2:	At	what	load	factor	should	you	expand	your	internal	capacity?	Remember	that	you	
must	recalculate	the	destination	of	each	WordInfo	object	when	you	expand	your	array.		
Design	Decision	#3:	What	should	the	new	size	of	your	array	be?	

	
Your	WordInfoSeparateChain	is	a	private	inner	class.	Clients	of	this	program	should	never	interact	directly	
with	an	Instance	of	this	class,	and	should	not	know	that	it	exists	(neither	in	comments	or	public	interface).	

	
There	will	be	some	redundant	code	between	your	public	methods;	it	might	help	to	make	some	private	
helper	methods	to	clean	up	your	code.	

	
Feel	free	to	add	additional	public	functionality	that	you	think	would	be	useful	for	a	client	(this	is	
specifically	applicable	for	part	3	of	this	assignment	(see	below)	

	
Mutability:	Be	careful	with	methods	such	as	WordInfoSeparateChain’s	getElements(),	or	WordInfo’s	
getAssociations(),	as	they	return	references	to	their	internal	fields.	This	means	a	client	(in	this	case,	YOU)	
can	directly	modify	the	fields.	While	this	may	be	helpful,	you	should	be	careful	what	operations	you	
perform,	so	you	don’t	introduce	bugs	into	your	code.	

	
	
	
	

Hints	
Take	a	look	at	the	prettyPrint()	method	in	TextAssociator.java	to	help	get	some	hints	of	how	your	internal	
structure	should	look	

	
Read	the	private	inner	class	WordInfoSeparateChain	and	WordInfo.java	very	carefully	and	make	sure	you	
understand	the	methods	being	provided.	They	will	assist	in	your	implementation.	

	
This	project	does	not	require	a	lot	of	code!	The	sample	solution	for	TextAssociator.java	is	less	than	250	
lines	(including	comments	and	starter code).	Make	sure	you	fully	understand	how	hashing	and	separate	
chaining	work	before	you	start	trying	to	write	code.	Slides	from	class	and	the	book	are	great	resources.	

3) ThesaurusClient	
Once	you	think	your	implementation	of	TextAssociator	is	working,	you	can	test	it	by	running	
ThesaurusClient.	A	very	simple	test	case	to	verify	that	your	TextAssociator	is	working	properly	is	to	run	
this	program	with	“simple_thesaurus.txt”.	This	text	file	contains	a	handful	of	words	that	will	be	
replaced	with	synonyms	when	you	run	the	program.	A	simple	test	case	is	to	input	the	following:	

Input:	 “my code is really good and I am very smart”
Output:			“my code is absolutely marvelous and I am bona fide brainy”

From	this	example	you	can	see	that	“really”	was	replace	with	“absolutely”	because	our	text	file	
specified	that	“absolutely”	was	the	only	synonym	for	“really”.	You	can	also	see	that	our	
simple_dictionary.txt	did	not	specify	any	synonyms	for	the	word	“code”,	so	it	was	left	unreplaced	in	our	
output.	
	
Once	you	are	convinced	that	your	TextAssociator	is	working	properly	(and	properly	resizing),	run	the	
program	and	input	the	following	sentence	exactly	as	follows	(using	large_thesaurus):	“hello	world	it	is	
fun	to	write	code	and	have	fun	with	data	structures”.	Include	the	response	from	in	your	write---up.	Keep	
in	mind	your	sentence	will	be	probably	be	nonsensical	and	will	be	different	each	time	you	run	it.	Include	
your	favorite	in	the	write---up	J

Note:	ThesaurusClient	is	not	very	robust	and	doesn’t	work	very	well	with	punctuation	
	

4) Creating	your	own	client	code	
Now	that	you	have	seen	how	one	client	could	use	your	TextAssociator,	your	next	task	is	to	create	your	
own	client	code	that	will	use	your	TextAssociator	in	a	different	way.	You	will	create	a	file	named	
MyClient.java that	has	the	following	requirements:	
	

1) Initializes	and	populates	a	TextAssociator	object	with	at	least	20	associations	
2) Uses	said	associations	to	accomplish	some	goal	(i.e.	must	be	making	calls	to	.getAssociations())	
3) Outputs	some	text	to	System.out	explaining	what	your	client	code	is	doing,	etc.	

	
You	can	use	ThesaurusClient	as	a	helpful	example	in	writing	your	client	code	if	you	would	like.	Please	
write	a	very	explanative	class	comment	on	you're	MyClient and	in	your	write---up	explaining	what	
your	client	does	and	how	your	TextAssociator	was	used	to	accomplish	this	goal.	
	
If	you	are	having	trouble	coming	up	with	ideas,	think	about	the	following:	

spellchecker,	contact	list,	auto---complete	tool,	etc.	
	

5) Write	up,	please	answer	the	following	questions	about	your	implementation.	
Please	keep	your	answers	concise	
1) For	each	of	the	Design	Decisions	mentioned	above,	please	discuss	possible	options	that	

you	considered,	what	you	ended	up	choosing,	and	why.	
	

2) What	hash	function	did	you	choose	for	your	TextAssociator	(i.e.	did	you	did	you	use	String’s	
hashcode	method,	did	you	make	your	own)?	Why	was	this	hash	function	effective?	Are	there	
alternative	hash	functions	that	you	considered?	

3) We	chose	to	implement	this	TextAssociator	with	separate	chaining.	If	you	were	instead	going	to	
use	a	different	collision	resolution	scheme,	what	would	you	choose?	How	and	where	would	your	
code	change?	Give	several	specific	examples	to	illustrate	your	understanding.	

	
4) How	long	did	you	spend	on	this	assignment?	What	portion	did	you	find	most/least	challenging?	

	
	

Submission	Information	
You	will	submit	TextAssociator.java, MyClient.java,	and	your	discussion	questions	in	
README.txt (please	make	sure	it's	a	.txt!)	to	the	homework	3	dropbox	
(https://catalyst.uw.edu/collectit/assignment/ldegreef/40647/161789).	You	should	not	modify	any	files	
other	than	TextAssociator.java.	

