CSE 373 Summer 2017 Homework 2: Asymptotic Analysis

Due Thursday, July $6^{\text {th }}$ at $5: 00 \mathrm{pm}$
Name:
Students you worked with (but did not share solutions with!):

Student ID number: \qquad

1) Big-O (3 points)

For each of the following, show that $f \in O(g)$ by finding values for c and n_{0} such that the definition of big-O holds true, as we did with examples in lecture. Listing valid values for c and n_{0} is sufficient (no further proof necessary).
a) $f(n)=47 n^{3}+2050 n$
$g(n)=n^{5}$
b) $f(n)=12(4+\log (n))$
$g(n)=3 n$
c) $f(n)=18 n$
$g(n)=\frac{n}{42}$

2) Runtime Analysis (6 points)

For each of the following program fragments, determine the asymptotic runtime in terms of \mathbf{n}. Explain or show your work (an explanation of your intuition can be sufficient).
a)

```
public void mysteryOne(int n) {
    int y = 1;
    for (int j = 0; j < n*(n-4); j++) {
        for (int i = 1; i < n; i *= 2) {
            y *= y;
        }
    }
}
```

b)

```
public void mysteryTwo(int n) {
    int x = 0;
    for (int i = n/2; i < n; i++) {
        if (i % 5 == 0) {
            break;
        } else {
            for (int j = 1; j < n; j += 2) {
                x++;
                x *= 2;
            }
        }
    }
}
```

c)
public void mysteryThree(int n) \{
for (int $i=n ; i>=0 ; i--)$ \{
helper(i);
\}
\}
private void helper(int x) \{
if ($x>0$) \{
helper (x - 3) ;
\}
\}

3) More Asymptotic Analysis (3 points)

For each of the following, determine if $f \in \mathrm{O}(\mathrm{g}), f \in \Omega(\mathrm{~g}), f \in \Theta(\mathrm{~g}), f \in \mathrm{o}(\mathrm{g}), f \in \omega(\mathrm{~g})$, several of these (and which), or none of these. No proofs necessary, listing your answer is sufficient.
a) $f(n)=24 n^{4}-n$

$$
g(n)=3 n^{2}+8+n^{4}
$$

b) $f(n)=10^{n}$

$$
g(n)=n^{10}
$$

c) $f(n)=\log (\log (n))$

$$
g(n)=\log (n)
$$

4) Pseudocode and Recurrence Relations (9 points)
a) Write pseudocode for a function that calculates the largest difference between any two numbers in an array of positive integers with a runtime in $\Theta\left(n^{2}\right)$.
For example, the largest difference between any two numbers in the following array would be 90. $a=[37,8,92,4,6,20,11,2,40]$
b) Can this function be written with a runtime in $\Theta(n)$? If yes, write pseudocode below. If no, why? What would have to be different about the input in order to do so?
c) Can this function be written with a runtime in $\Theta(1)$?. If yes, write pseudocode below. If no, why? What would have to be different about the input in order to do so?

5) Recursion and Recurrence Relations (5 points)

Note: For this set of problems, let c and d be constants and let the base case be $T(c)=d$.
a) What is the recurrence relation for the following method? (The base case is given)

```
public void recursiveMethod(int n) {
    if (n == 1) {
        return;
    }
    int sum = 0;
    for (int i = 0; i < n; i++) {
        sum += i;
    }
    if (sum % 2 = 0) {
        System.out.println("The sum is even");
        return recursiveMethod(n/2);
    } else {
        System.out.println("The sum is odd");
        return recursiveMethod(n/2);
    }
}
```

b) Find the tightest Big-Oh bound for your recurrence relation from part (a) using the base case $T(c)=b$. Justify your answer.
(An example of the tightest Big-O bound: for $f(n)=5 n$, the tightest bound is $O(n)$, not $O\left(n^{2}\right)$)

6) Growth Rates (3 points)

Order the following functions from slowest to fastest in terms of asymptotic runtime. Be sure to show whether two functions have the same asymptotic runtime.

Ex: $5 n<3 n^{2}=n^{2}$

- n^{72}
- $\mathrm{n}^{2} \log (\mathrm{n})$
- $2^{(n / 2)}$
- $\log (\mathrm{n})$
- $n \log \left(n^{2}\right)$
- n^{6}
- $\mathrm{n} \log (\log (\mathrm{n}))$
- $\mathrm{n} \log ^{2}(\mathrm{n})$
- n
- n^{2}
- $n \log (\mathrm{n})$
- 2^{n}
- $\left.\log ^{2(} n\right)$
- $2 / n$
- $\log (\log (n)$
- $2^{(1 / 2)}$

7) Proof by Induction (8 points)

Our friend the 3-Eyed Alien doesn't believe that $2^{n}>n^{2}$ as n approaches infinity. "See," they say, "for $n=3$ the opposite is true!" Use induction to prove to our friend that after a certain point, $2^{n}>n^{2}$ is indeed true.
Hint: It may be useful to use the fact that $(n-1)^{2}>2$ for $n \geq$ the base case, along with some clever addition and subtraction after multiplying out the polynomial.

Be sure to clearly mark each step, and where you use the inductive hypothesis.

8) Amortized Analysis (5 points)

Note: For all parts of this problem, when we ask for Big-O we're asking for the tightest Big-O bound. (For example, the tightest Big-O bound for $\mathrm{f}(\mathrm{n})=5 \mathrm{n}$ is $\mathrm{O}(\mathrm{n})$, not $\mathrm{O}\left(\mathrm{n}^{2}\right)$)
a) Imagine an array-based implementation of a stack that, instead of doubling its array size, it increases its array size by the fixed amount of 1000 every time it's full. For this stack, what is the Big-O amortized cost (i.e. average asymptotic running time) to push () n times? Justify your answer.
b) Based on their amortized costs for push (), which version of an array-stack would you use: one that doubles its array size or one that increases its array size by a fixed amount (i.e. 1000) whenever it's full, and why?
c) Imagine an array-based implementation of a stack that doubles its array size when the array is full, and halves the array size when it's $3 / 4$ empty. What is the Big-O amortized cost of pop () if it's the $\boldsymbol{n}^{\text {th }}$ operation done on an initially empty stack? Justify your answer.

