
Amortized Runtime
When calculating amortized runtime, your goal is to compare the ​total cost ​of a series of
operations with ​how many​ of those operations happened. The intuition here is that you
want to “build up enough credit” with a series of cheap operations, so that when you have
one (or more) expensive operations, you can average out the cost of the expensive one.

Amortized Example: Resizing an array when full
Resize Rule​: When trying to insert when the array is full, make a new array that is double
the size and copy over elements. Not exactly the same as, but similar to this picture:

You’re ​always ​ analyzing the following equation:

total cost of operations
total number of operations

Where an “operation” is the operation a client is doing through your public interface, like
insert(5) or pop() or add(3).

Let’s say you have an array with the 5 elements [1, 2, 3, 4, 5]

1 2 3 4 5

When you try to add an element 6, you need to resize your array:

1 2 3 4 5 6

This operation was expensive! You had to copy over all of the elements into the new array
before adding the 6. The analysis for the runtime of each of these operations is:

add(1) ----> O(1)
add(2) ----> O(1)
add(3) ----> O(1)
add(4) ----> O(1)
add(5) ----> O(1)
add(6) ----> O(N)

So you got 5 cheap operations before you got 1 expensive one. This continues, if you keep
adding elements 7, 8, 9, 10, 11, when you add 11 you will have to do the same copy
operation. So to continue the analysis for the runtime:

add(1) ----> O(1)
add(2) ----> O(1)
add(3) ----> O(1)
add(4) ----> O(1)
add(5) ----> O(1)
add(6) ----> O(N)
add(7) ----> O(1)
add(8) ----> O(1)
add(9) ----> O(1)
add(10) ----> O(1)
add(11) ----> O(N)

And this continues. So for after the first resize operation, you get 4 cheap operations before
an expensive one. After the second resize operation, you get 9 cheap operations before an
expensive one. And so on. The number of cheap operations you get before 1 expensive
operation keeps increasing, since you double the array each time you resize:
5 initial cheap, 1 expensive, 4 cheap, 1 expensive, 9 cheap, 1 expensive, 19 cheap, …

This means that the number of cheap operations you get is increasing linearly as the size of
your array increases. A.K.A. you get ​N cheap operations, before 1 expensive operation​.

So, again, your job in analyzing this is to compare the ​total cost ​of a series of operations
with ​how many​ of those operations happened.

total cost of operations

total number of operations

= N + 1 operations total
N cheap operations O(1) cost + 1 expensive operation O(N) cost* *

= N
O(N)

= (1)O
What matters here is that you had N cheap operations, and then 1 operation that cost O(N).

Not Amortized Example: Resizing an array when full
Resize Rule​: When trying to insert when the array is full, make a new array that has 3 extra
slots. Not exactly the same as, but similar to this picture:

Let’s say you have an array with the 5 elements [1, 2, 3, 4, 5]

1 2 3 4 5

When you try to add an element 6, you need to resize your array:

1 2 3 4 5 6

This operation was expensive! You had to copy over all of the elements into the new array
before adding the 6. The analysis for the runtime of each of these operations is:

add(1) ----> O(1)
add(2) ----> O(1)
add(3) ----> O(1)
add(4) ----> O(1)
add(5) ----> O(1)
add(6) ----> O(N)

So you got 5 cheap operations before you got 1 expensive one. This continues, except now
the copy operation happens for every 3 adds. So to continue the analysis for the runtime:

add(1) ----> O(1)
add(2) ----> O(1)
add(3) ----> O(1)
add(4) ----> O(1)
add(5) ----> O(1)
add(6) ----> O(N)
add(7) ----> O(1)
add(8) ----> O(1)
add(9) ----> O(N)
add(10) ----> O(1)
add(11) ----> O(1)
add(12) ----> O(N)
add(13) ----> O(1)
add(14) ----> O(1)
add(15) ----> O(N)

And this continues. So for after the first resize operation, you get 2 cheap operations before
an expensive one. After the second resize operation, you get 2 cheap operations before an
expensive one. And so on. The number of cheap operations you get before 1 expensive
operation ​stays constant​, since you double the array each time you resize:
5 initial cheap, 1 expensive, 2 cheap, 1 expensive, 2 cheap, 1 expensive, 2 cheap, …

So, again, your job in analyzing this is to compare the ​total cost ​of a series of operations
with ​how many​ of those operations happened.

total cost of operations
total number of operations

= 2 + 1 operations total
2 cheap operations O(1) cost + 1 expensive operation O(N) cost* *

= 3
O(N)

= (N)O
What matters here is that you only had 2 cheap operations, and then 1 operation that cost
O(N). You can’t amortize the O(N) expensive operation over the 2 cheap operations you get
from adding only 3 extra slots to your array.

Summary:
You are always comparing the ​total cost ​of a series of operations with ​how many​ of those
operations happened. So you are trying to compare the ​number of cheap operations​ you
get with ​how expensive your expensive operation​ is.

You’re ​always ​ analyzing the following equation:

total cost of operations
total number of operations

Where an “operation” is the operation a client is doing through your public interface, like
insert(5) or pop() or add(3).

